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COLUMN: From the Editors 

Reflecting on  
Two Decades of  
Services Computing 

As young researchers more than 15 years ago, 

Patrick Hung and Brian Blake participated in the 2003 

IEEE International Conference on Web Services. This 

year in July, Hung and Blake attended the most 

recent iteration of the conference, the 2018 IEEE 

World Congress on Services in San Francisco. Although the topics have varied over the 

decades, the 2018 Congress covered aspects of innovative services research and 

current and emerging applications in services computing. The Congress now contains 

seven different conferences in the areas of big data, cloud computing, edge computing, 

cognitive computing, the Internet of Things, web services, and services computing. 

Over lunch, Hung and Blake reflected on papers from this year’s Congress and 

considered current trends in the community.  

In 2003, services computing represented a relatively new research area that encompassed a new 
class of paradigms and technologies including web services, service-oriented architecture (SOA), 
business process integration and management, utility/grid computing, and autonomic computing. 
At the time, the IEEE Computer Society had officially launched the Technical Steering Commit-
tee for Services Computing (TCSVC). The discipline of services computing covers the science 
and technology of bridging the gap between business services and information technology ser-
vices. This year’s IEEE World Congress on Services had interesting contributions in four re-
search categories: big data analytics/cognitive computing, mobile edge computing, machine 
learning, and robotic computing. Here, we discuss some of the papers from these areas and their 
contributions. 

BIG DATA ANALYTICS 
Big data is a term that has been gaining considerable attention in recent years. It describes a 
large amount of organized or unorganized data that is analyzed to make informed decisions or 
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evaluations. The data can be taken from a variety of sources including browsing history, geolo-
cation, social media, purchase history and medical records. There are three main characteristics 
associated with big data:  

1. volume is used to describe the vast amounts of data that is utilized by big data;  
2. variety is used to describe the many different types of data sources used as part of a big 

data analytics system; and  
3. velocity is used to describe the speed at which data is generated.1 

Here, we share a few readings from the Congress on the latest findings.  

Referring to data management and quality evaluation, Ikbal et al.2 presented an across-the-board 
quality management framework. It includes a roadmap for data scientists that considers the as-
sessment of quality as early as possible and end-to-end integration across the following areas: 

• implementation of continuous quality improvement and enforcement mechanisms in 
quality management;  

• specification of data quality metrics that should cope with the data’s dynamic nature and 
its unconventional characteristics;  

• development of new quality dimensions with specific measurement attributes for un-
structured and schema-less data;  

• enforcement of quality requirements, generation of quality reports and feedback to sup-
port assessment activities;  

• development of automated real-time dashboards for data quality monitoring;  
• application of higher degrees of statistical proof in different data quality evaluation pro-

cesses including sampling, regression, correlation, and matching;  
• development of effective quality outcome predictions; and  
• evaluation of the quality of representative sets of data samples and generation of quality 

models to apply to the whole data. 

It’s widely accepted that quality is the most important foundation to support big data analytics.  

For big data analytics, researchers establish approaches to mine and discover unknown patterns 
and insights from huge volumes of raw data.3 Big data analytics has become very popular in the 
areas of marketing and customer-relationship management. Many industries have adopted the 
use of big data analytics and are experiencing fantastic results. For example, the healthcare, re-
tail, insurance, and telecommunications industries have all displayed the endless possibilities of 
implementing big data into their operations.1 

Khalajzadeh et al.3 studied data analytics software tools for domain experts who are not compu-
ting specialists. The tools have the following functions:  

• to cover data preprocessing operations such as cleaning, wrangling, anomaly detection, 
and so on;  

• to incorporate a variety of algorithms for each stage of data processing, modeling, and 
evaluation processes; and  

• to cover software development life cycle (SDLC) stages, including business problem 
descriptions, requirements, design, implementation, testing, and deployment. 

A research topic related to big data analytics is sentiment analysis. Sentiment analysis techniques 
determine the overall sentiment orientation for topics discussed in the text as positive, negative, 
or neutral, while emotion detection from text identifies the categories of emotions the text ex-
presses.4 Analyses of text using emotional categories have proven valuable with the growth of 
social media tools, such as Twitter, for communication and collaboration. Traditional sentiment 
analysis only visualizes an aggregation of opinions expressed in the content, while neglecting the 
presence of the creators of the content and the impact of their varying levels of participation. 
Hemmings-Jarrett et al.5 addressed this gap and concluded that differences in the level of user 
participation potentially impact the samples extracted for sentiment analysis and interpretation in 
their study. 

4September/October 2018 www.computer.org/internet



 

 FROM THE EDITORS 

MOBILE EDGE COMPUTING  
Mobile edge computing is a network architecture concept that enables the cloud computing ser-
vice environment at the edge of the cellular network by running applications and performing re-
lated processing tasks closer to the cellular customer. Mobile edge computing is designed to 
decrease latency and network congestion for mobile users. Zhang et al.6 presented a quality of 
experience (QoE) aware control plane for adaptive streaming service over mobile edge compu-
ting infrastructures with the following features:  

• a timeslot system with a look-ahead window for calculating the cost of edge node 
switch and video quality adaption (to balance network load and reduce latency);  

• conducting service adaption via a set of cooperative action components running on cli-
ent devices, edge nodes, and center nodes (to ensure a smooth viewing experience); and  

• constructing a flexible QoE model and extending the scope and meaning of user-per-
ceived experience. 

Edge servers are usually deployed at the edge of the network so that computation is performed at 
the proximity of data source. This has two advantages: on downstream data, edge servers play a 
role of cloud service provider, making computing resources close to end users so that the latency 
of service request can be very low; and on upstream data, it helps to improve the network trans-
mission on the core network. Li and Wang7 studied the problem of energy-aware edge server 
placement as a multi-objective optimization problem and found a more effective placement 
scheme with low energy consumption. 

MACHINE LEARNING 
Intelligence in computing is essential to achieve service excellence for the ever more compli-
cated requirements of the rapidly evolving global environment, as well as to discover useful pat-
terns among the vast amount of data. This involves knowledge from various disciplines such as 
computer science, industrial and systems engineering, management sciences, operation research, 
marketing, contracts, and negotiations. It also involves cultural transformation and integration 
methods based on beliefs, assumptions, principles, and values among organizations and humans. 
For example, machine learning has been used in recent years for processing and analyzing ser-
vice-oriented architecture, providing insights to businesses and policymakers for making intelli-
gent decisions. More recently, deep learning technology promises to further revolutionize such 
processing, leading to better and more accurate results. Deep learning employs software tools 
from advanced analytics disciplines such as data mining, predictive analytics, text mining, and 
machine learning based on a set of algorithms that attempt to model high-level abstractions in 
data by using multiple processing layers with complex structures or nonlinear transformations. 
As such, the processing and analysis of deep learning applications present methodological and 
technological challenges together with opportunities. For example, Ishtiaq et al.8 presented a 
semi-supervised clustering-based diagnosis recommendation model in healthcare via machine 
learning techniques based on an unstructured textual dataset. 

Referring to intelligent transport systems, Abbas et al.9 presented a short-term road traffic den-
sity prediction based on long short-term memory (LSTM) neural networks. The model is trained 
by using traffic data collected by the Motorway Control System in Stockholm, that monitors 
highways and collects flow and speed data per lane every minute from radar sensors based on 
partitioning the road network into stretches and junctions with one or more LSTM neural net-
works. On the other side, Duan et al.10 discussed a neural network-based method to simulate the 
cognitive process of how human beings read Earth science articles and identify implicitly cited 
dataset entities from the articles.  

Deep learning employs software tools from advanced analytics disciplines such as data mining, 
predictive analytics, text mining, and machine learning based on a set of algorithms that attempt 
to model high-level abstractions in data by using multiple processing layers with complex struc-
tures or nonlinear transformations. However, the processing and analysis of deep learning appli-
cations present methodological and technological challenges. Further, deep learning applications 
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are advantaged by a rise in sensing technologies as witnessed by both the number and rich diver-
sity of sensors ranging from smartphones, personal computers, and health tracking appliances to 
the Internet of Things (IoT) technologies. These technologies are designed to give contextual, 
semantic data to entities in a ubiquitous environment that could apply intelligence to decision 
making. Recently, deep learning technologies have been applied to service-oriented computing. 
For example, Cai et al.11 presented an example of applying advanced deep learning techniques 
on a large-scale, geo-tagged, and image-based dataset measuring urban tree cover using Google 
Street View (GSV) images to efficiently estimate important urban metrics, particularly in deep 
convolutional neural networks. 

Referring to the brain-computer interfaces, Bellman et al.12 described an experiment to determine 
if modern machine learning techniques could be used to accurately detect and classify unaware 
and aware facial recognition. The experiment consisted of participants viewing a variety of im-
ages. Over a period of three phases across two days, participants were first trained on a number 
of images that they were to implicitly learn for unaware recognitions on the following day. On 
the second day of the experiment, participants were shown these implicitly learned images, 
among others including a single memorized face for aware recognition, and then the electroen-
cephalogram signals were recorded for later analysis.12 

ROBOTIC COMPUTING 
Robotic computing is a branch of artificial intelligence (AI) technologies and their synergistic 
interactions that enable and are enabled by robots. James Kuffner at Google coined the term 
“cloud robotics” to describe a new approach to robotics that takes advantage of the Internet as a 
resource for massively parallel computation and real-time sharing of vast data resources. For ex-
ample, Li et al.13 investigated the task assignment and scheduling in collaborative cloud robotic 
systems (CCRS), in which robotic agents can work cooperatively, not only by sharing their pro-
cessing resources with each other but also by supporting cloud services, making them more intel-
ligent, efficient, and knowledgeable. 

CCRS is a technical solution to fulfill complex tasks, such as multi-robot Simultaneous Localiza-
tion And Mapping (SLAM). However, the challenges stem from not only the computation com-
plexity of large-scale map merging but also the inefficiency of enabling parallel computing in 
this process, which is indispensable to make available the frontier of computing technology, such 
as cloud infrastructure. For example, Zheng et al.14 presented a scalable real-time multi-robot 
visual SLAM framework based on the cloud robotic paradigm that can distribute the SLAM pro-
cess to multiple computing hosts in a cluster, which enables map building in parallel. Further, 
Silva Filho et al.15 described a robotic platform developed within Baker Hughes, a GE company 
(BHGE) and GE Global Research Centers (GE-GRC), discussing its use in an industrial inspec-
tion case study for remote methane inspection in oilfields.  

CONCLUSION 
Services computing continues to evolve. We were delighted that the area continues to thrive both 
in research and in industry. Services computing is integrated into the physical world more today 
than ever before. The future of this area will continue to be connected to big data in addition to 
practical applications in artificial intelligence and human-centered computing.  

We certainly hope to be having this conversation again in another decade but can only imagine 
how the area will evolve. This month’s issue has been crafted from a group of papers that over-
lap human-centered interaction with the Internet and Web Media. We hope you enjoy the papers 
selected for this issue. 
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COLUMN: View from the Cloud 

Serverless Is More:  
From PaaS to Present 
Cloud Computing 

In the late 1950s, leasing time on an IBM 704 cost 

hundreds of dollars per minute. Today, cloud 

computing—using IT as a service, on demand with 

pay-per-use—is a widely used computing paradigm 

that offers large economies of scale. Born from a 

need to make platform as a service (PaaS) more 

accessible, fine-grained, and affordable, serverless 

computing has garnered interest from both industry 

and academia. This article aims to give an 

understanding of these early days of serverless 

computing: what it is, where it comes from, what the 

current status of serverless technology is, and what 

its main obstacles and opportunities are. 

The 1950s saw the emergence of two technologies that are 
currently shaping the world: containerization in shipping 

and time sharing in computing. By allowing shipping to become standardized and automated, 
containerization gave rise to manufacturing and retail ecosystems, and ultimately to the eco-
nomic phenomenon of globalization.1 By enabling multiple clients to share the same physical 
infrastructure, time sharing gave rise to cloud computing and the modern digital ecosystems, 
which are key drivers for growth in knowledge-based societies.2 

Whereas few companies or people could afford the cost of time-sharing services and paid dearly 
for simple computer simulations in the late 1950s, today more than 80% of companies, along 
with many private individuals, use the hundreds of services accessible through cloud compu-
ting.3,4 Following with remarkable regularity the evolution observed in the history of containeri-
zation, cloud services have adapted to offer better-fitting containers that require less time to load 
(boot) and to provide increased automation in handling (orchestrating) containers on behalf of 
the client. 
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Serverless computing promises more: to achieve full automation in managing fine-grained con-
tainers. Already, IT spending on serverless computing is expected to exceed $8 billion per year, 
by 2021.5 To understand what serverless is and what it can deliver, we trace the evolution of 
computing technology that has given rise to serverless computing, analyze the current status of 
serverless technology, and identify the main obstacles and opportunities we see in delivering on 
its promise. 

What is serverless computing? We have proposed the following definition: 

Serverless computing is a form of cloud computing that allows users to run event-driven and 
granularly billed applications, without having to address the operational logic.6 

This definition places serverless as a computing abstraction, partially overlapping with platform 
as a service (PaaS). With serverless, developers focus on high-level abstractions (e.g., functions, 
queries, and events) and build applications that infrastructure operators map to concrete re-
sources and supporting services. This effectively separates concerns, with developers focusing 
on the business logic and on ways to interconnect elements of business logic into complex work-
flows. Meanwhile, service providers ensure that the serverless applications are orchestrated—
that is, containerized, deployed, provisioned, and available on demand—while billing the user 
for only the resources used. These separated roles have also emerged for physical containers, 
with manufacturers and retailers in the role of developers, and shipping lines in the role of ser-
vice providers. 

Clients of serverless computing could use the function as a service (FaaS) model, which we de-
fine this way: 

Function as a service (FaaS) is a form of serverless computing in which the cloud provider man-
ages the resources, lifecycle, and event-driven execution of user-provided functions.6 

With FaaS, users provide small, stateless functions to the cloud provider, which manages all the 
operational aspects to run these functions. For example, consider the ExCamera application, 
which uses cloud functions and workflows to edit, transform, and encode videos with low la-
tency and cost.7 A majority of the tasks in these operations can be executed concurrently, allow-
ing the application to improve its performance through parallelizing these tasks. 

To deploy ExCamera using the traditional infrastructure as a service (IaaS) model, a user would 
need to spin up virtual machines (VMs), provision them, orchestrate the workflows, manage re-
sources as needed, and manage the variety of dynamic issues (e.g., faults and inconsistencies). 
This would require considerable expertise and continuous effort in orchestrating ExCamera, and 
yet result in significant amounts of underutilized but paid-for resources. Instead, by leveraging 
serverless computing, ExCamera defers the operational complexity to the cloud provider, using 
FaaS to manage the operational lifecycle of the individual video tasks. 

However promising, serverless computing is still an emerging technology. Understanding how 
applications such as ExCamera can leverage it requires finding answers to questions such as 
these: 

• What are the computer technologies underlying serverless? 
• What is the status of the current serverless technology? 
• What can we expect from the field of the serverless computing in the foreseeable fu-

ture? 

We address these questions with a threefold contribution. First, we identify the concepts leading 
to serverless computing, with deep historical roots in concrete and abstract innovations in com-
puter science. Second, we analyze the current state of the technology and the complex technolog-
ical ecosystems it consists of. Finally, we identify and analyze important obstacles and 
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opportunities in this emerging field that we—as a community—need to address to make the serv-
erless promise a reality. We conclude with a forewarning question: can we reproduce the suc-
cesses and avoid the downsides of physical containerization? 

THE LONG ROAD TO SERVERLESS 
In this section, we analyze the evolution of computer technology that led to serverless compu-
ting—going back to the 1960s. All the breakthroughs indicate that serverless computing would 
not have been possible a decade ago, when it would have missed enabling technologies such as 
the distinction between IaaS and PaaS (standardized by NIST), fine-grained containerization 
(e.g., Docker), and even a diverse set of applications.3 In Figure 1, we distinguish six main di-
mensions of these critical breakthroughs that together led to the emergence of serverless. 

 

Figure 1. A history of computer science concepts leading to serverless computing. 

CONTAINERIZED RESOURCES 
Complementary to time sharing, virtualization abstracts away the physical machine to reduce the 
operational effort and to allow the same physical resources to be shared across multiple applica-
tions and users (multiplexing). Although associated in recent memory with VMware’s ESX tech-
nology (2001), virtualization was invented much earlier; it was used in production in late-1960s 
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IBM mainframes. Virtualization was finally conceptualized nearly a decade later.8 With the 
emergence of the Internet in the 1990s, these early concepts of virtualization were introduced 
online to enable shared hosting through virtual private servers. Soon after the release of ESX, 
cloud computing emerged, making virtual resources available over the Internet. 

Like their physical counterparts, digital containers protect their content from external abuse. 
They do this by adding a layer of abstraction over the resources provided by the system. 
FreeBSD added jails—independent partitions of the system with their own directory subtree, 
hostname, IP address, and set of users. Linux followed with cgroups (2006), a mechanism to 
group processes and to assign each group separate resources. The Linux Containers project 
(LXC, 2008) bundled cgroups and kernel namespaces, along with better tooling. Built on LXC, 
Docker (2013) offered convenient container orchestration, fostering an entire ecosystem based 
on digital containers. 

Serverless computing is the latest result of this long-term process of defining virtualization ab-
stractions, to eliminate concerns related to server provisioning and management. Although it ex-
poses abstract resources (e.g., functions) to the user, these are mapped to concrete resources 
(e.g., containers), continuing the transition from “bare metal” to “bare code.” 

Code as Functions 
The ability to execute arbitrary “cloud functions” is essential to serverless computing. 

Technology has emerged and reemerged often for running domain- and context-specific remote 
functions. We can trace this concept to as early as 1968, when, with IBM’s Customer Infor-
mation Control System (CICS), users were able to associate user-provided programs with trans-
actions. RPC (specification in 1976, implementation in 1984) enabled the invocation of arbitrary 
procedures located in remote systems, over a communication network. Derived from RPC, 
stored procedures for databases (1980s) and Common Gateway Interface (CGI) scripts for web-
servers (1990s) aimed to bring support for executing functions to specific domains. Google App 
Engine—with other PaaS platforms following its example—started allowing users to asynchro-
nously execute arbitrary tasks in the background. 

In contrast to these context-specific implementations, serverless computing aims to provide a full 
abstraction for arbitrary, event-driven execution of generic functions. 

Naming and Discovery 
Managing and invoking services, including functions, depends on being able to name and dis-
cover services. Derived from a long line of technological innovations, current approaches follow 
the pathbreaking concepts of Lightweight Directory Access Protocol (LDAP, 1993) and URI 
(1994). LDAP uses naming and properties and enables distributed directory services over 
TCP/IP. URI provides unique identifiers for resources, encoded as character strings. 

Serverless extends naming and discovery with function versioning and aliases—e.g., offered by 
Amazon Web Services (AWS). With versioning, it is possible to work with different immutable 
versions of a function simultaneously. Aliases are mutable pointers to a version and can be used 
to transition a version from one stage to another (e.g., from development to production) without 
changing the deployed application. 

Functions as Computation 
Serverless computing relies on the concept of function as computation, which stems from a long 
tradition of ever-higher-level abstractions and specialization in computer science. 

Functional programming9 departed from procedural programs, to allow the developer to manage 
abstract data types and control flows, instead of the concrete details of memory and processors. 
The application of object-oriented principles to distributed systems lead to the creation of 
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DCOM (Distributed Component Object Model), CORBA (common object request broker archi-
tecture), and OSF (the Open Software Foundation) in the 1990s. In the 2000s, we climbed up the 
specialization ladder by contextualizing and interconnecting services—e.g., through service-ori-
ented architecture10 (SOA) and architectures based on REST (Representational State Transfer). 

These previous developments gradually led to microservices: self-contained applications provid-
ing specific functions over well-defined protocols.11 Continuing this trend, serverless develop-
ment is effectively a hyperspecialization of services. 

Execution Flows 
Serverless computing depends on the ability to coordinate execution flows. 

Concurrency12 has been an early and vital model for the evolution of computing, allowing multi-
ple processes to make progress at the same time, while remaining under the developer’s control. 
This model has many applications, and many other models are rooted in concurrency, including 
generalized processes, threads, and actors.13 

Over the past two decades, we have moved toward a declarative form of expressing concurrency. 
Workflows declare the structure of applications, leaving the concrete execution and synchroniza-
tion of workflow tasks to the runtime system. This model has a multitude of applications14 and 
underlies our view of serverless computing. 

Events to Trigger Functions 
The first computer programs were synchronous, carefully crafted to follow a particular code 
path. This model made programs difficult to create and modify and less robust to changing con-
ditions. Soon, event sourcing addressed the need to record, order, and respond to requests for 
state changes. 

With the proliferation of high-level languages and advanced operating systems, the concept of 
linking disparate computation together with special communication constructs took hold. Device 
drivers were early examples of this event-driven programming. With the rise of the Internet, 
event-driven distributed systems became widely used—with events mapped intuitively to the 
asynchrony of real-world networks. 

Indeed, in modern systems, event-based protocols allow systems in an ecosystem to communi-
cate without excessive dependence on the implementation details of each individual system. Ow-
ing to its highly networked nature, serverless computing is apt to leverage this idea, through 
well-defined event protocols and ways to manage events—for example, by using message 
queues. 

SERVERLESS NOW 
In this section, we discuss how ExCamera could use serverless computing. We explain the cur-
rent and emerging technological ecosystem for serverless, and detail the expected benefits from 
using serverless: better resource management, scaling, and more insight and control. 

The State of Serverless Technology 
To execute parts of the workloads using small serverless functions, ExCamera parallelizes video 
transcoding using AWS Lambda, one of the many FaaS platforms.15 These various platforms dif-
fer in focus, target domain, assumed model, and architectural decisions. Next to the closed-
source FaaS platforms, addressing the lack of insight and vendor lock-in, several open-source 
platforms have emerged, including Apache OpenWhisk, Fission, and OpenLambda.16 

To address the complexity of working with many different FaaS platforms and their incompati-
ble APIs, the community has focused on informal standardization. Serverless frameworks—e.g., 
Apex or the Serverless Framework—provide a common programming model that enables easier, 
platform-agnostic development, along with better interoperability of functions. 
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Much serverless tooling already exists to allow developers to defer nonessential tasks, sparking 
the emergence of a diverse ecosystem of (serverless) services, from serverless databases to moni-
toring to security. For example, workflow engines, such as Azure Logic Apps, Fission Work-
flows, and PyWren,17 abstract away the complexity of networking in the composition of higher-
order functions and services. 

Benefits of Current Serverless Technology 
Serverless computing promises more value than other cloud operations: equal or better perfor-
mance while reducing the operational costs of applications. This has led industry—rather than 
academia—to drive the initial development and adoption of this paradigm. Figure 2 illustrates 
the main case for serverless computing. 

 

Figure 2. A case for serverless computing: higher resource utilization, finer granularity, and more 
detailed control than with container-based or self-hosted computing. (a) Resource utilization in the 
cloud. (b) For the zoom-in, resource utilization with virtual machines (VMs). (c) For the zoom-in, 
resource utilization with serverless computing. 

Benefit 1: Improved Resource Management 

In the traditional cloud model, the user is responsible for selecting and deploying the concrete 
resources. To avoid overburdening the user with options, the range of options is generally lim-
ited to large, multifunctional resource types (e.g., VMs or containers). Applications rarely fit 
these resources, and, to mitigate the overhead incurred by the large, general-purpose resources, 
applications are coarse-grained. 

As illustrated in Figure 2a, coarse-grained applications lead to inaccurate autoscaling decisions, 
causing severe under- or over-provisioning. In contrast, serverless computing means applications 
are fine-grained, which means the cloud provider can more closely match abstract resource de-
mand to actual system resources. 

Benefit 2: More Insight and Control 

In the traditional model, the user is responsible for deploying, monitoring, and other operational 
tasks related to the lifecycle of coarse-grained applications (see Figure 2b). However, many 
cloud users do not have the necessary expertise. Moreover, the operators lack context, so they 
have to make autoscaling decisions without accurate profiling or insights from the deployed ap-
plications. 
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With serverless, the increased responsibility for the operator gives more insight and control. Op-
erators select the resources; deploy and provision resources; implement and control the monitor-
ing of resource usage, workload intensity, and application behavior; and can autoscale or migrate 
the application. They can profile and model the granular services constituting the serverless ap-
plication (see Figure 2c), offer this information to users, and improve the decisions made with 
these insights. 

Benefit 3: Granular Scaling 

In the traditional model, applications consist of large, multifunctional VMs with multiminute 
provisioning times. These VMs act as black boxes and thus are difficult to model and predict for 
operators. Although applications are typically bottlenecked by only one of the resources in one 
part of the application, the operators can only scale the entire application to resolve the bottle-
neck. Eliminating some of these issues is possible but requires the user to rearchitect the applica-
tion, typically as microservices. The effectiveness depends highly on the user’s expertise11—
most users cannot benefit. 

With serverless, the operator can better scale the individual, granular services or functions, using 
deep insights. The contrast between Figure 2b and Figure 2c illustrates this situation. 

Other Benefits 

Other benefits motivate the adoption of serverless computing. The shift from capital expenses to 
operational expenses more accurately aligns the costs to the actual business processes. The inde-
pendent services allow teams to choose the right tools and dependencies for a use case without 
impacting other parts of the system and organization. The high-level abstraction allows software 
developers to iterate on these distributed systems more quickly, while limiting the need for ex-
tensive expertise in distributed systems. Etc. 

PERSPECTIVES ON SERVERLESS 
Although serverless computing already offers many benefits, many obstacles could inhibit its 
further adoption. In joint work with the Standard Performance Evaluation Corporation RG Cloud 
Group (https://research.spec.org/working-groups/rg-cloud.html), we have identified more than 
20 detailed challenges and opportunities for serverless computing.5,18 Here, we identify the top 
five obstacles and opportunities arising from them (see Table 1). 

Table 1. Obstacles and opportunities for serverless computing. 

Obstacle Opportunity 

Fine granularity and cost Nontrivial resource management, work-
flows of functions, orchestration, fine-
grained “pay-per-use” pricing, optimizing 
cost–performance tradeoffs 

Data privacy Fine-grained access control and function-
level auditing and provenance, full GDPR 
(General Data Protection Regulation) 
compliance 

Performance Fine-grained scheduling and resource 
management, new performance models 
and fairness mechanisms that help re-
duce resource contention and perfor-
mance variability 
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Data-intensive applications Fine-grained data-centric programming 
models 

API jungle Service discovery and brokering, fine-
grained software lifecycle management, 
standardized multicloud APIs, interopera-
bility, portability, multimodal services 

 

First, the fine granularity for expressing computation adds significant overhead to the resource 
management and scheduling layers. To overcome this, we envision significant research efforts 
invested in coscheduling and orchestration for workflows of functions. Moreover, from a user 
perspective, we need new tools for navigating the cost–performance tradeoffs to explore the 
complexity of fine-grained pricing models. 

Second, data privacy is important for the clients and nontrivial for the providers to offer—for 
example, ensuring full GDPR (General Data Protection Regulation; https://www.eugdpr.org) 
compliance. With its fine-grained nature, serverless computing allows for more enhanced access 
control, function-level auditing, and provenance for seamless, efficient GDPR compliance. 

Third, in modern clouds, performance suffers from significant variability due to resource conten-
tion, virtualization, and congestion overhead. These issues are amplified in serverless computing, 
because of its granular nature. However, the increased insight and control over the operational 
lifecycle provides cloud providers with opportunities to minimize these performance issues by 
being able to more accurately monitor, profile, and schedule these fine-grained services. 

Fourth, data-intensive applications are not naturally expressed in the—stateless—FaaS para-
digm. We envision the design and implementation of fine-grained, data-centric, serverless pro-
gramming models. One promising research direction is investigating distributed promises in 
serverless environments. 

Finally, the API jungle generated by the fast-evolving serverless APIs, frameworks, and libraries 
represents an important obstacle for software lifecycle management and for service discovery 
and brokering. To overcome this, significant effort must be invested in multicloud API standard-
ization, interoperability, and portability to avoid lock-in and to enable seamless service discov-
ery. 

CONCLUSION 
Serverless computing is a promising technology, with a burgeoning market already formed 
around it. By analyzing the computer technology leading to it, we conclude that this model could 
not have appeared even a decade ago. Instead, it is the result of many incremental advances, 
spanning diverse domains: from the increasingly granular resource abstractions, to the emer-
gence of abundant amounts of resources available nearly instantly, to the reduction of costs and 
complexity of distributed applications. 

The current serverless technology offers its customers fine billing granularity, detailed insight 
and control, and the affordable ability to run arbitrary functions on demand. However, this tech-
nology has not been demonstrated beyond selected, convenient applications. We have identified 
several obstacles and opportunities and have argued that industry and academia must work to-
gether. Can we make serverless computing available for many, without the drawbacks of the 
technology and processes underlying physical containerization? 
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DEPARTMENT: Big Data Bites 

Response to “Scale Up or 
Scale Out for Graph 
Processing” 

In this article, the authors provide their views on 

whether organizations should scale up or scale out 

their graph computations. This question was explored 

in a previous installment of this column by Jimmy Lin, 

where he made a case for scale-up through several 

examples. In response, the authors discuss three 

cases for scale-out. 

Our colleague Jimmy Lin in the University of Waterloo’s Data Systems Group wrote an article 
for this department giving his perspective on whether organizations should scale up or scale out 
for graph analytics.1 Similarly to that article, for rhetorical convenience, we use “scale up” to re-
fer to using software running on multicore large-memory machines and “scale out” to refer to 
using distributed software running on multiple machines. 

It is difficult to disagree with the central message of Jimmy’s article: For many organizations 
that have large-scale graphs and want to run analytical computations, using a multicore single 
machine with a lot of RAM is a better option than a distributed cluster because single-machine 
software, compared to distributed software, is easier to develop in-house or use out of the box, is 
often more efficient, and is easier to maintain. This is indeed true, and for the social-network 
graphs and the computations discussed in that article—e.g., a search for a diamond structure or 
an online random-walk computation for recommendations—scale-up is likely the better ap-
proach. However, Jimmy’s article gave the impression that only a handful of applications require 
scale-out computing, and it failed to highlight several common scenarios in which scale-out is 
necessary. 

In this response article, we discuss three cases for scale-out: 

• Trillion-edge-size graphs. Several application domains, such as finance, retail, e-com-
merce, telecommunications, and scientific computing, have naturally appearing graphs 
at the trillion-edge-size scale. 

Semih Salihoglu 
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Editor: 
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• Very large extracted graphs. Graphs are often views extracted from other data sources. 
Even if the original data sources can fit in the memory of a single machine, the extracted 
graphs can be orders of magnitude larger, requiring processing on multiple machines. 

• Complex graph computations. Graph analytics does not comprise random walks, Page-
Rank, connected components, and single-source shortest-path computations, which the 
database community obsesses about. There are significantly more complex computa-
tions that necessitate scale-out even when running on graphs that can fit on a single ma-
chine. 

In the remainder of this article, we discuss these points and several others, highlighting when 
scale-out would be necessary. In addition, together with Jimmy, we recently ran a survey of us-
ers of graphs (led by our student Siddhartha Sahu), asking them about their graphs, graph soft-
ware, and graph computations.2 We have a different interpretation of the survey results than were 
given in Jimmy’s article. We discuss our perspective at the end of this article. 

Before we start, let’s briefly discuss some terminology. The terms “graph computations” and 
“graph analytics” are so broadly used that they give very little information about the nature of 
the computations people refer to with these terms. We will not suggest a fix to this confusion. 
Often, the meaning will become clear in context, and we will give concrete example computa-
tions for the analytics we refer to. As in Jimmy’s article, we will, however, ignore OLTP-like 
workloads, such as “return the two-degree neighbors of node v”-type queries that might be issued 
by user-facing online applications. 

PLENTY OF GRAPHS AT THE TOP 
Jimmy’s article used the trillion-edge scale as the size that justifies scale-out solutions, argued 
that there are only a handful of such graphs, and asked “How many trillion-edge graphs are 
there?” Naturally, we should expect power-law phenomena in the number of institutions and or-
ganizations and the size of the graphs they have. So, trillion-edge graphs will be significantly 
fewer than 100-billion-edge graphs, which will be significantly fewer than 10-billion-edge 
graphs, etc. However, contrary to the common belief, there is not just a handful of trillion-edge 
graphs. We discuss two commonly appearing examples. 

Edge-per-Transaction Graphs 
In the database community, large graphs are traditionally associated with the web, the Semantic 
Web, and social-network graphs from Facebook or Twitter. This limited view fosters the misper-
ception that there are only a few large graphs in the world. Instead, we are observing that large 
graphs are appearing in domains such as finance, retail, e-commerce, and telecommunications, 
where an edge is often a transaction or an interaction between entities. We refer to these as trans-
action graphs. 

For example, a user makes a transfer from bank account A to bank account B through mobile 
phone P. This leads to a new transfer edge between A and B and an accessed-via edge between A 
and P, with other metadata, such as dates or amounts, on these edges. Another example, from 
retail, is a user going to a retailer’s branch and buying a product using a specific credit card, 
which generates several edges between the entities involved. 

Transaction graphs are not limited to finance and retail; they also appear in e-commerce and tele-
communications—e.g., a customer reviewing a product or two phones calling each other. When 
transactions and interactions are modeled as edges between entities, graphs easily reach the tril-
lion scale. This was one of the surprising outcomes of our survey, in which users told us that 
their most common graphs were transaction graphs consisting of customers, orders, products, 
and transactions. 

Computations for fraud detection and risk and revenue estimation seem to be common on trans-
action graphs. We are aware of a financial company that has graphs with tens of trillions of 
edges and is continuously looking for complex fraud patterns on them. One such pattern contains 
a cycle with eight edges. We also know of an online-ad company that ingests one billion edges 
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per day for a graph containing nodes of users, URLs, IP addresses, and devices and interaction 
edges between them. They run proprietary graph algorithms on the graph. Retailers look for re-
curring purchases and chains of transactions in transaction graphs for revenue estimation. PayPal 
runs (or used to run) a belief-propagation-like algorithm on its transaction graph3 on Apache 
Giraph (http://giraph.apache.org) to compute the risks of its customers and transactions. 

It is not difficult to imagine a long list of algorithms and computations organizations run on these 
very large-scale graphs. At the trillion scale, even without any metadata on the nodes and edges, 
a scale-out solution is the only reasonable approach. 

Scientific-Computing Graphs 
There is another scale of graphs in the high-performance computing (HPC) field for scientific 
computing. This community works on architectures, systems, and algorithms for supercomput-
ers, such as those produced by Cray. We are not in this field, so our knowledge about the graphs 
here is incomplete. However, we are familiar with some of their publications, benchmarks, and 
challenges, in which trillion-edge graphs are the norm. 

For example, the famous Graph500 benchmark (https://graph500.org) outlines six scales of input 
graphs on its home page, the largest of which contains 4 trillion nodes and 64 trillion edges. Nu-
merous papers have appeared in HPC venues such as the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC), in which graph algorithms are 
designed for such large-scale benchmarks and are naturally evaluated on tens of thousands of 
machines. The largest real-world graphs we are aware of from this domain are biological graphs 
with sizes ranging from tens of billions of edges to a trillion edges (e.g., the human brain’s con-
nections).4–6 As we discuss later, it’s not just the size of these graphs that requires scaling out. 
Sometimes the computational requirements of the applications require scaling out when pro-
cessing graphs from the HPC domain. 

Trillion-size graphs are not limited to transaction and scientific graphs. The US National Secu-
rity Agency has a “Big Graph Experiment” for processing graphs with tens of trillions of edges.7 
DARPA’s HIVE (Hierarchical Identify Verify Exploit) Challenge (https://graphchal-
lenge.mit.edu/darpa-hive) also targets processing trillion-scale graphs. We did not dare ask, but 
who knows what kind of graphs these institutions have and what they do with them? 

EXTRACTING MORE GRAPHS AT THE TOP 
Graphs are often extracted from other data sources in practice. Transaction graphs are perhaps 
the most obvious example of this. Take, for example, PayPal’s graph data pipeline described in 
its Apache Giraph presentation.3 In this pipeline, raw transaction data is put into a Hadoop clus-
ter and then extracted into a graph model in several formats such as JSON (JavaScript Object 
Notation) and Gson. 

Amol Deshpande observed that it is common to extract multiple graphs views on top of the same 
raw data and that these views can be orders of magnitude larger than the base data sources.8 The 
running example in Deshpande’s paper is the DBLP dataset containing papers and their authors. 
The most obvious graph you can extract from this dataset is a bipartite graph of paper and author 
nodes and author-wrote-paper edges. Another graph you can extract is a coauthor graph contain-
ing an edge between two authors who have coauthored a paper. 

As shown in Deshpande’s paper, sometimes these extracted graphs can be one or two orders of 
magnitude larger than the base data. For example, even if a retailer has a transaction graph of its 
customers and products with one billion edges, a co-purchasing graph that contains an edge be-
tween two customers that have purchased the same product can have tens of trillions of edges, 
requiring scale-out software for processing. We suspect that if the existing scale-out software 
were scalable enough, users would extract ever larger and more complex graphs from their data 
sources. 
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RAW-DATA VERSUS PROCESSABLE-DATA SIZE 
While we are still discussing the size of graphs, it is worth noting that the arguments about graph 
data being small seems to be centered around the size of the raw datasets. Each graph system has 
its own format for input data, and these input file sizes might not be large. However, to process 
this data, systems often create internal data structures (e.g., adjacency lists) and various indexes. 

We conducted an experiment in which we took a number of real graphs and loaded them to a 
system—in our case, PowerLyra.9 The results are shown in Table 1. 

Table 1. Processable graph sizes. 

Dataset No. of ver-
tices 

No. of 
edges 

Raw data PowerLyra 
(single machine) 

Live Journal 4.8 M 68.9 M 1.08 Gbytes 6.30 Gbytes 

USA Road 23.9 M 58.3 M 951.00 Mbytes 9.09 Gbytes 

Twitter 41.6 M 1.4 B 26.00 Gbytes 128.00 Gbytes 

UK0705 82.2 M 2.8 B 48.00 Gbytes 247.00 Gbytes 

World Road 682.4 M 717.0 M 15.00 Gbytes 194.00 Gbytes 

 

It is important to note the “blow-up” factor in going from raw data to processable data. It is cer-
tainly true that the factor is dependent on system implementations and varies among systems. 
The blow-up might be small for in-house software tailored for a few specific applications, but it 
is often larger for software that supports a large set of applications. As a simple example, it is 
common for graph software to index the edges of an input graph both in the forward and back-
ward directions. Once the internal structures of the software are populated, the size of the data 
that needs to be kept in memory quickly increases. With careful engineering, it might be possible 
to reduce the amount of expansion, but it is doubtful whether it can be eliminated. 

PLENTY OF COMPUTATIONS AT THE TOP 
Sometimes, it is not the size of the graphs but the heavy computations running on them that ne-
cessitates a scale-out solution. In the database community, we might have over-studied and over-
optimized three algorithms: PageRank, the connected-components algorithm based on spreading 
vertex IDs, and the Bellman–Ford-like single-source shortest-paths algorithm. There are, how-
ever, many other algorithms that require significantly more processing than these. 

Take, for example, the Markov clustering algorithm for finding clusters in graphs.10 The algo-
rithm is based on simulating long random walks in the graph. In the linear-algebra framework, it 
is implemented by iteratively squaring a stochastic matrix of the graph that is obtained initially 
from the adjacency list matrix. The baseline algorithm requires space and runtime that are quad-
ratic in the number of nodes, and even its optimized versions are computationally expensive. For 
example, a distributed implementation of the algorithm on a 70-billion-edge graph is reported to 
take 2.4 hours on a cluster with 2,000 machines.4 

Another example from scientific computing is de novo genome assembly of de Brujin graphs of 
small genome segments. In one paper, this was done for the human genome in 8.4 minutes on a 
cluster with 15,000 machines.5 There are a lot of such computationally expensive algorithms for 
tasks such as partitioning,11,12 node classification,13 link prediction (e.g., those using the Katz 
measure of node similarity),14 and community detection,15 which would require scale-out imple-
mentations. At least, scaling out would allow you to move up one level in the scale of graphs you 
can process. 
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In the database community, we do not know of users of graph-processing systems discussing 
these algorithms, possibly because they are complex and users would run into scalability prob-
lems. However, we don’t see any reason our community’s users would not adopt them if these 
algorithms came prepackaged in some scalable distributed software. 

Another set of computation-heavy algorithms arise in machine learning. There is a growing in-
terest in embedding nodes of graphs into high-dimensional vectors and running machine-learn-
ing algorithms on them.16 We are not experts in this area, but it is not difficult to imagine users 
wanting to run complex machine-learning algorithms on these representations—say, training 
deep neural networks with many layers—that likely would require scale-out processing. 

WHAT THE SURVEY REALLY SAYS 
Let us next give our own interpretation of the survey results2 that were discussed in Jimmy’s arti-
cle. In our survey, we asked participants about the size of their graphs in terms of the number of 
edges. The largest scale we offered them was “1 billion edges and above.’’ Twenty of the 89 par-
ticipants picked this largest scale. These participants were recruited from the email lists of 22 
software programs for processing graphs, including graph databases, RDF triple stores, graph 
analytics libraries, distributed graph engines, and graph visualization software. 

Jimmy interpreted these results as evidence that graphs in practice are not very large because 
storing a billion-edge graph would require 8 Gbytes of RAM. We have a different interpretation 
of these results, for two reasons. 

Our first reaction when we got the results was the realization that we did not do a very good job 
in formulating the graph size questions. We should have had at least two larger scales, going up 
to 100-billion-edge graphs. To remedy this problem, we surveyed email lists of the 22 graph 
software applications in our list and found graphs that were a lot larger than 1 billion edges (see 
Table 18 in the paper2). Specifically, we found 42 users indicating graphs between 1 billion and 
10 billion edges, 17 users with 10 billion to 100 billion edges, six users between 100 billion and 
500 billion edges, and one user with a graph larger than 500 billion edges. These numbers sug-
gest that at least graphs on the scale of 100 billion edges and above no longer exist only at 
Google, Facebook, and Twitter and are becoming prevalent. 

Second, and maybe more important, when asked about their major problems, more than half of 
the participants stated that their biggest problem is scalability. This was the single most popular 
challenge. Here, our guess is that a lot of users are using single-machine software and are having 
trouble scaling with it. We cannot tell which specific workloads participants are trying to scale, 
but it is not far-fetched to think that at least some of them are non-OLTP batch computations 
such as clustering, node centrality computations, or link prediction. 

To us, the survey contains more evidence supporting scale-out solutions than evidence support-
ing scale-up solutions. However, readers should always keep in mind that the survey might not 
be very representative of users with non-OLTP workloads, which is what we focus on here. This 
is because we suspect that many (probably most) of the survey participants were users of graph 
databases, such as Neo4j, which are used mainly for OLTP-like workloads. 

CONCLUSION 
Let’s conclude by revisiting an old question that is destined to come up in any scale-up versus 
scale-out discussion: how will organizations scale up or scale out when needed? It is possible to 
implement a completely serial or multithreaded algorithm for a workload, and it is possible that 
these implementations might perform better than scale-out solutions. However, when the time 
comes, scaling up often means putting more RAM on an existing machine or buying or renting a 
larger machine with more RAM or more cores. This might be quite costly, slow, or limited: the 
next big machine might be on the market or cloud in a few months and only have a few more 
CPUs. Scaling out by buying or renting more of the existing machines instead will likely be 
cheaper and simpler. This is about hardware. 

On the software side, organizations should rightfully be concerned that existing distributed soft-
ware will not scale, following the now-famous COST (configuration that outperforms a single 
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thread) arguments against it.17 For example, Jimmy’s article noted that “many scale-out distrib-
uted graph processing frameworks are just terrible in terms of performance.’’1 However, it is im-
portant to realize that this is not a fundamental limitation of scale-out software. Certainly not all 
distributed software is terrible. For example, the Naiad system18 developed by the authors of 
COST was demonstrated to have a low COST for graph computations.17 One thing we know 
from history is that with more engineering efforts, software will improve in performance, and the 
COST of existing distributed graph software should get better over time. 

The discussion of scale-up versus scale-out is an old one—both in general and as it relates to 
graph processing. Certainly, if your graph size fits your machine’s main memory and single-ma-
chine software suits your needs, this should indeed be the first thing to try. However, our re-
search and experience suggest that there are many cases, some of which we outlined in this 
article, in which this solution is not generally suitable. Another thing we know from history is 
that data sizes never decrease but continue increasing, so it is important for organizations to an-
ticipate this. 
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FEATURE ARTICLE: User Behavior 

To Follow or Not to Follow: 
A Study of User 
Motivations around 
Cybersecurity Advice 

Usable-security researchers have long pondered 

what motivates some users to ignore advice and 

make decisions that appear to put their security and 

privacy at risk. The study reported here specifically 

investigated user motivations to follow or not follow 

computer security advice, through a survey distributed via Amazon Mechanical Turk. To 

guide the study design, the authors used a rational-decision model and current thought 

on human motivation. The data shows key gaps in perception between those who 

followed the tested pieces of advice (update software, use a password manager, use 

two-factor authentication, or change passwords) and those who did not and helps 

explain the participants’ motivations behind their decisions. Notably, the study found 

that social considerations were broadly trumped by individualized rationales. 

User perceptions and adoption of various security tools and techniques has remained a popular 
research topic. Some studies have identified1–2 and others have attempted to explain3–6 a diver-
gence between recommended actions and actual protections used by the public. This question of 
why some people follow security advice, while others do not, has been touched on before. How-
ever, to the best of our knowledge, it has not been broadly approached using empirical data col-
lected and analyzed for that purpose. 

We investigated the motivations of users to follow or not follow common computer security ad-
vice. Users’ decision making was modeled using a cost–benefit framework, with the concepts of 
risk and social motivation added. On the basis of this investigation, we present the findings from 
a web-based survey constituting both qualitative and quantitative data that was distributed to and 
completed by 290 Amazon Mechanical Turk users. 

Michael Fagan 
University of Connecticut 

Mohammad Maifi Hasan 
Khan 
University of Connecticut 
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As a foundation for our survey, we used four common security recommendations: updating soft-
ware, using a password manager, using two-factor authentication (2FA), and changing pass-
words. For each piece of advice, we formed two types of groups: those who followed the advice 
(Yes groups) and those who did not (No groups). We then compared their perceptions. Before 
collecting and analyzing data, we hypothesized that the benefits, costs, and risks of following 
and not following each piece of advice would be rated in a way that agreed with the participants’ 
reported decision to follow or not follow the advice. Additionally, we expected that social moti-
vations would be rated lower than individual motivations. 

These hypotheses were largely correct. The benefit of not following was rated higher by those 
who didn’t follow each piece of advice, whereas the risk of not following was rated higher by 
those who did follow each piece of advice. Furthermore, the cost of not following was seen as 
higher by those who followed each piece of advice compared to those who did not, for all the 
pieces of advice, except using 2FA. These findings indicate that each group viewed its decisions 
as the rational one, as we expected. Finally, individual concerns were rated higher than social 
concerns for all variables, indicating low social motivation around computer security. 

BACKGROUND 
Although complex, human decision making can be viewed as a consideration of cost and benefit, 
in which humans are rational actors who choose to minimize cost and/or maximize benefit. 
Herley highlighted this model in his work exploring the motivations around following security 
advice, citing the low chance of a security breach for any given user (representing low benefit) 
and the high cost of daily security maintenance.4 He also suggested that more data is needed to 
determine the actual cost and benefit of these decisions to better inform the advice experts give. 
Another study showed that users show rational tendencies when considering whether to accept 
advice, such as looking to the trustworthiness of the source in some cases (e.g., antivirus soft-
ware), but relying on personal evaluation in others (e.g., passwords).7 Inspired by these prior ef-
forts, we used a cost–benefit framework as the starting point for our study’s design. 

In addition to cost and benefit, the literature shows us that risk perception is central to security-
related behavior.5,8 Literature surveys have identified security risks and risk perceptions as key 
considerations in many studies that focus on psychology and computer security.5 The study de-
signs of recent usable-security research have focused on risk as well.2,9 Thus, we incorporated 
perceptions of risk along with cost and benefit. 

Although risk perception is intrinsically linked with security decisions, we also added social mo-
tivations (motivations driven by values or wanting to help or please others), which are argued to 
be independent of and much stronger or longer lasting than instrumental motivations (motiva-
tions related to gaining material reward or avoiding material cost).10 Some researchers have in-
vestigated social motivations in the area of usable security. For example, Das et al. found that 
users could be better motivated to act securely online if their peers would know the decisions 
they were making.11 Therefore, our study’s model was expanded to include how participant users 
thought their decisions affected users of other computers. 

Finally, there is evidence in the literature suggesting that experts and average users think and act 
differently when it comes to computer security. Ion et al. showed that experts and regular users 
reported different behaviors when asked which they think are the best for staying safe.1 Addi-
tionally, another study found that security-sensitive users (as many experts arguably are, on the 
basis of their security-conscious behavior reported in Ion et al.’s study) and general users differ 
in their sources of security advice.12 However, Kang et al. found that there was no direct correla-
tion between participants’ technical background and the actions they took to control their pri-
vacy.2 Thus, rather than separating users into experts and nonexperts, we simply compared those 
who followed each piece of advice with those who did not, to identify differences in perceptions 
between those two groups. 
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METHODS 
As the previous section described, our study was designed to investigate the motivations of users 
to follow or not follow common computer security advice, using several cues from prior studies. 
We focused on four pieces of common security advice harvested from Ion et al.’s 2015 paper:1 

• keeping software up to date, 
• using a password manager, 
• using 2FA, and 
• changing passwords frequently. 

For each, we sampled two groups of users: those that followed the advice and those that did not. 
To help in describing the study, we refer to the samples of users who followed each piece of ad-
vice as Yes groups, whereas we refer to the samples of users who did not follow the advice as 
No groups. All groups were sent a similarly designed survey to gauge their motivations. 

Survey Content 
We extended the traditional cost–benefit analysis to include the perception of risk and consider 
the social aspect of each decision. These concepts were formalized into the following 12 varia-
bles: 

1. Individual Benefit of Following 
2. Social Benefit of Following 
3. Individual Cost or Inconvenience of Following 
4. Social Cost or Inconvenience of Following 
5. Individual Risk of Following 
6. Social Risk of Following 
7. Individual Benefit of Not Following 
8. Social Benefit of Not Following 
9. Individual Cost or Inconvenience of Not Following 
10. Social Cost or Inconvenience of Not Following 
11. Individual Risk of Not Following 
12. Social Risk of Not Following 

Variables were defined using survey instruments phrased differently for each piece of advice, 
Yes or No group, and specific variable. One of these two phrasings was used to define each vari-
able: 

• Phrasing A. How much would you say [you | users of other computers] are [benefited | 
cost or inconvenienced | put at risk] by you (not) [following the advice]? 

• Phrasing B. How much would you say [you | users of other computers] would be [bene-
fited | cost or inconvenienced | put at risk] if you did (not) [follow the advice]? 

Variables 1 through 6 were defined using Phrasing A for the Yes groups and Phrasing B for the 
No groups. Variables 7 through 12 were defined with Phrasing B for the Yes groups and Phras-
ing A for the No groups. This was done to match the instrument’s phrasing to the participant’s 
reported decision. Individual variables used “you” in the first bracket, whereas social variables 
used “users of other computers.” The second brackets were likewise replaced for the variables 
that asked about benefit, cost or inconvenience, and risk. Finally, “follow (or following) the ad-
vice” was replaced as appropriate for each piece of advice that we tested in the surveys (e.g., 
“use (or using) 2FA”), with “not” being added as needed. 

Because each variable was defined in a slightly different format for the Yes and No groups, our 
analysis compared ratings that were more or less hypothetical, depending on the group. The goal 
of this work was to identify the possible gaps in perceptions between those who followed the se-
curity advice and those who did not. 
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For the decisions examined in this study, because the users might have been pondering a behav-
ior they had not practiced in the past, at least some of their considerations might have been hypo-
thetical. Their perceptions of possible outcomes might have been skewed or biased, which we 
hoped to identify. Therefore, our study had to compare hypothetical ratings with more grounded 
reports. 

A 4-point Likert scale was used for each of the quantitative questions described above (i.e., 1 = 
none, 2 = little, 3 = some, and 4 = a lot). An open-ended statement requesting survey takers to 
indicate why they chose to follow or not follow the target advice (“Please explain in a few sen-
tences why you choose to (not) [follow the advice]”) was shown to participants first, on a sepa-
rate page in all surveys. We did this to avoid biasing the open-ended responses toward our 
overall study framework. 

The quantitative questions were then divided into two additional pages in the survey. The first 
asked about perceptions of the participant’s reported behavior; the second asked about percep-
tions of the opposite behavior. 

Survey templates for both groups, showing the format, are in the appendix of our 2016 SOUPS 
(Symp. Usable Privacy and Security) paper.3 

Sampling Methodology 
We used Mechanical Turk to gather an initial sample of participants who answered a screening 
survey that asked for basic demographic information as well as a report of which of our study’s 
advice they did or did not follow. Participants were compensated $0.25 for completion of these 
instruments. This compensation level was set low owing to the small number of instruments in-
cluded. Participants were informed that they could be contacted with an additional survey based 
on their responses to this initial set of instruments, but no indication was given as to how eligibil-
ity would be determined. 

On the basis of the screening survey responses, we formed the Yes and No group for each piece 
of advice by randomly selecting 50 participants that matched the group’s target behavior. For 
example, the Yes group for updating comprised a random selection of 50 respondents who said 
they updated on the initial survey. A participant selected to be in a group was not considered for 
inclusion in others. 

Follow-up participants were contacted with the appropriate survey through Mechanical Turk’s 
messaging system. They were informed that their continued participation was entirely voluntary. 
If they chose to continue, they were compensated another $4 for their time and effort on the 
longer survey. Not all 50 for each group replied, resulting in samples between 30 and 40 partici-
pants for each, for a total of 290 across all eight groups. 

EVALUATION 
Our analysis was guided by our study model framework. We identified gaps in perceptions be-
tween the Yes and No groups for each piece of advice, with particular divergence around the 
benefit and risk associated with their decisions. Our qualitative data helped us understand some 
possible explanations for the differences between groups. Finally, we revisited the quantitative 
data to highlight the dominance of individual considerations around deciding to follow computer 
security advice. 

Gaps in Perceptions 
Before data collection, we hypothesized that the participants’ ratings would align with their re-
ported behavior. Those who didn’t follow each piece of advice were expected to rate the risk and 
cost of doing so as lower than those who did follow the advice, while also rating the benefit 
higher. Conversely, those who did follow the advice were each expected to rate the benefit as 
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higher than those who didn’t follow the advice, while rating the risk and cost of doing so as 
lower. 

Through analysis of the data, we saw significant gaps in the rated benefit, cost, and risk involved 
in the decision to follow each piece of advice, when comparing the Yes and No groups that gen-
erally agreed with our hypothesis. Table 1 shows summaries of responses for each variable, from 
each piece of advice’s Yes and No groups, along with Mann-Whitney U tests comparing the dis-
tribution.13 We used Cohen’s d to express the effect size of the difference between the Yes and 
No groups’ distributions. 

Table 1. Rating summaries for all variables, from each group, with U tests comparing the 
distribution between each Yes group (participants who followed the advice) and No group 
(participants who did not follow the advice). The effect size is measured with Cohen’s d.  

A shaded background indicates results that are of significance p < 0.004. 
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BENEFIT 
Benefit can be a key motivator if a decision appears to provide it. Our study measured both the 
rated benefit of following and not following each piece of advice. By comparing these benefit 
ratings between the Yes and No groups, we could see whether the participants diverged in their 
perceptions of the benefit related to each piece of advice. 

As seen in Table 1, for all pieces of advice, the Yes groups rated the benefit of following the ad-
vice as significantly higher than the No groups rated the benefit they thought they would get if 
they followed the advice. Social Benefit of Following was not rated significantly differently be-
tween groups for any piece of advice. 

We found a similar, but mirrored, tale for Individual Benefit of Not Following. In this case, the 
No groups rated their benefit as significantly higher than the Yes groups rated the benefit they 
would experience if they no longer followed the advice. Again, there were no significant differ-
ences between groups on any piece of advice for Social Benefit of Not Following. 

When we looked at the qualitative data to help explain this gap, a few patterns emerged across 
the pieces of advice. About half of those who said they updated frequently and half who said 
they used a password manager mentioned the added security benefit as a reason for their deci-
sion. Furthermore, 72% (N = 36) of those who used 2FA and 86% (N = 37) of those who fre-
quently changed their password mentioned security benefits in their comments. Some decisions 
seemed to have other benefits as well, such as getting the latest software through updating (10 of 
the 39 participants who updated regularly) or the added convenience of a password manager (37 
of the 40 password manager users). 

Risk 
Decisions related to security are uniquely tied to risk. So, we dug into the participants’ ratings of 
the risk involved in and avoided by their security decisions, to better understand their thinking. 
Looking at Table 1, for all or most advice, Individual Risk of Not Following and Social Risk of 
Not Following were rated lower by the No groups than by the Yes groups. 

Many comments from the No groups mentioned a lack of worry about the risk as a reason for 
their decision. About a fifth of comments from both those who did not use 2FA (19%) and did 
not change passwords regularly (18%) said they decided not to follow the advice because they 
didn’t care if they were hacked. 
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Sometimes, rather than not caring about a risk, participants in the No groups expressed height-
ened attention to the perceived risk, which impacted their decision. For example, eight comments 
from those who did not update said they wanted to avoid change or harm. Notably, almost half 
(45%, N = 38) of those who did not use a password manager said they were explicitly avoiding a 
security risk they saw in using such a tool. We also see this sentiment in Table 1, where the pass-
word manager No group rated Individual Risk of Following as significantly higher than the Yes 
group. In fact, Individual Risk of Following was rated significantly differently between the Yes 
and No groups only for using a password manager; no other advice had significant differences 
for this variable. 

The No group’s qualitative comments shed some light. Twelve of the 38 comments mentioned 
avoiding centralization of passwords as a reason for deciding to not use a password manager. 
The Yes groups showed a pattern of being motivated by a security benefit or avoidance of risk; 
ironically, many from the password manager No group were similarly motivated in their counter-
decision. 

Cost 
No matter how prominent the risk being avoided, if the cost is too high, many users will refuse 
or be unable to follow the advice. Thus, we analyzed how participants from each group rated the 
cost of following and not following each piece of advice. 

For updating frequently and using a password manager, the Yes groups rated Cost of Not Fol-
lowing as higher than the No groups for both the individual and social phrasings. Additionally, 
the individual phrasing was rated significantly differently for changing passwords. Over half 
(56%, N = 39) of the comments from those who updated reported avoiding bugs as a reason for 
their action. The large number of comments from the users of password managers that mentioned 
the convenience of the tool showed how advice-specific implications can alter decision making 
for some users. 

Cost was a top complaint from the No groups. Almost a quarter (23%, N = 30) of those who 
didn’t update, half (48%, N = 31) of those who didn’t use 2FA, and over half (53%, N = 38) of 
those who didn’t frequently change passwords said the avoidance of an inconvenience influ-
enced their decision. For not using 2FA, 23% (N = 31) mentioned avoiding a cost explicitly, 
while 39% (N = 38) of those who did not frequently change passwords said they made their deci-
sion because frequently changing passwords would be hard to remember to do or make their 
passwords hard to remember. These findings highlight how the context of a decision, specifically 
the cost involved, might have a big impact on a user’s action. 

Social versus Individual Motivations 
Although many comments from the participants at the start of the survey conformed to the bene-
fit–risk–cost breakdown in our study’s framework, the social–individual divide was not as appar-
ent. Only 13 of the 290 comments we received mentioned any kind of social motivation, all from 
the Yes groups. Prompted by this and our study hypothesis that the individual ratings would be 
higher than the social ratings, we used the quantitative data to investigate further. 

Figure 1 shows the relative magnitude of the ratings for the individual phrasings of each variable 
compared to the social phrasings. The individual phrasings were rated consistently higher for all, 
regardless of the advice or decision. Statistical tests of these differences showed that they were 
significant. 
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Figure 1. A plot of the average overall ratings for each variable, arranged to show the consistently 
lower social ratings compared to the individual ratings. A sign test of each variable pair (individual 
versus social) found significant (p < 0.001) differences for all variables. 

DISCUSSION 
Participants in our study generally rated the benefit, risk, and cost around each decision in a way 
that agreed with their reported behavior, which we expected in our hypotheses. For example, for 
all advice, Benefit of Following was rated higher for the Yes groups than the No groups, while 
Benefit of Not Following was rated higher by the No groups. This generally followed for risk 
and cost as well, where the Yes groups were apt to rate the risk and cost avoided by their deci-
sion as higher than the No group. This trend should be unsurprising, as you would expect an ad-
herent to think he or she is getting more benefit (or avoiding more cost and/or risk) than a 
nonadherent. However, it is important to keep in mind that those you are advising might have a 
different outlook than you. So, it is imperative for the advice experts give to be provably effec-
tive and usable because they must be convincing when trying to motivate new behavior. 

Notably, for most (but not all) advice, Individual Costs of Following and Individual Risks of 
Following were not rated significantly differently between the Yes and No groups. This could 
indicate that the groups agreed on the cost and risk of following those pieces of advice. This evi-
dence adds credence to calls from others that at least some users ignore security advice because 
of high cost and/or low benefit.4 In our sample, benefit was generally rated differently, whereas 
cost was rated much more similarly between the Yes and No groups. Although more data is cer-
tainly needed, it could be that some who do not adhere to good security practice do not see a usa-
bility issue in following the advice (as indicated by their agreement with the Yes groups on cost), 
but have a different perspective on the risk of their inaction and/or the efficacy of solutions. 

Our participants agreed in another way across the Yes and No groups: their motivations were 
predominately individual rather than social, another result we expected in our hypotheses. We 
saw this trend in both the quantitative and qualitative data, and it makes sense when you consider 
the individualized aspects of using a computer. Many times, individuals are physically alone 
when using their devices, which could impart a sense of isolation, even when on the Internet. 
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Although the participants did not identify it, their computer security decisions do affect others. 
For example, if a user chooses not to update, causing his or her device to be compromised and 
assimilated into a malicious botnet through a security flaw, then that user’s decision not to up-
date could impact others when their device participates in a distributed attack. Although newer 
research has pointed to the power of social motivation,10 given the lack of social consciousness 
around security decisions, future work that attempts to motivate users through social motivation 
needs to rethink how to best approach the problem. 

Finally, it is interesting to note that, on the basis of the project from which they were extracted, 
three pieces of the advice tested in this study were commonly recommended by experts, whereas 
the fourth (changing passwords frequently) was not commonly recommended by experts but was 
still regularly cited by average users as a way to stay safe online (i.e., folk advice).1 Looking at 
our data, there are some trends that differentiated the folk advice from expert advice. Specifi-
cally, frequently changing passwords seemed to offer the least benefit while simultaneously be-
ing the costliest, as can be seen in the ratings summaries of Table 1. Interestingly, this trend held 
for both the Yes and No groups, showing another area in which, despite a divergence in behav-
ior, the participants did not disagree in their ratings. 

Identifying why, despite lower efficacy and higher cost, some users still gravitate toward folk 
advice such as changing passwords, while balking at many expert recommendations, is impera-
tive to understand their decision making in this space. For example, some users might get their 
security habits from the IT policies of their workplace, which commonly suggest or require regu-
lar password changes, highlighting a subtle channel of communication (i.e., corporate IT policy) 
security experts might be able to utilize to increase secure behavior. Further investigation is 
needed to better inform these findings. 

Our approach is not without limitations. For instance, although we were able to find statistically 
significant differences in many places, more data from more users could generate additional 
findings or new insight into existing findings. Larger samples could garner stronger effect sizes 
than those in this study, which were generally moderate. In addition, examination of more types 
of advice and contexts (e.g., perceptions of the benefit, risk, and cost of specific kinds of de-
vices) could also broaden the picture. An expanded decision-making framework might provide 
more insight but would likely require a study larger than that presented here, introducing differ-
ent limitations. Finally, because Mechanical Turk’s population is not representative of the gen-
eral population, replication of this study with more samples would help generalize the findings. 

CONCLUSION 
Our results show differences in the perceptions of benefit, risk, and cost associated with the deci-
sion to adhere to a variety of recommended security behaviors. Both those who did and did not 
follow each piece of advice reported that their decision provided them more benefit than if they 
changed. Those who followed the advice rated the risk of changing their decision as much higher 
than did those who did not follow the advice. The cost of not following the advice was also seen 
as higher by those who followed it than by those who did not. Finally, we found that individual 
concerns were rated consistently higher than social concerns. 

More data about the actual risk and cost incurred by users as well as further investigations into 
perceptions will serve to better frame and explain the findings of this study. Nonetheless, our re-
sults have provided insight into user motivation in this context and serve to inform future efforts 
toward the broader goals of the usable-security field. 
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FEATURE ARTICLE: Identity-Deception Detection 

Real-Time Identity-
Deception Detection 
Techniques for Social 
Media: Optimizations and 
Challenges 

Identity-deception detection methods have been 

proposed for social-media platforms with high 

effectiveness, but their efficiency can vary. Previous 

literature has not examined the potential of these methods to work as real-time 

monitoring systems. Such implementations further highlight the challenges of applying 

computationally intensive methods in online environments that involve large datasets 

and high speeds of data. This paper attempts to classify detection methods based on 

the approaches and identifies factors that, in real-time systems, will impact the 

effectiveness and efficiency of these methods. Optimizations are proposed that can limit 

the computational overhead. Further challenges involving real-time identity-deception 

detection are discussed.  

Identity deception in social media has received attention in recent years.1,2 The rapid growth of 
the user population for social-media platforms coupled with the ease of creating new accounts 
has increased identity-deception attacks.3 These attacks can create disruptions in the normal op-
erations of online communities and impact their users. Research attention to novel identity-de-
ception detection methods has addressed the issue of identity deception using computational 
solutions. These are more effective than detection performed by humans. However, the computa-
tional overhead is rarely taken into account within the size and scope of social-media platforms. 
These computational solutions can only realistically be expected to have an impact on reducing 
identity-deception cases if they can monitor online communities on a real-time basis. The longer 
a deceptive account is allowed to operate unchecked, the larger its negative impact on an online 
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community. The ideal goal is to continuously monitor a new account and render judgments 
based on its actions until a confidence threshold is surpassed that would allow for classifying it 
as legitimate or malicious. However, literature has not examined the potential of these detection 
methods to monitor these online communities in real time.  

This paper provides a survey of existing identity-deception detection methods and identifies their 
potential application as real-time monitoring systems in large-scale social-media platforms. Their 
performance is discussed based on the estimated time complexity and their ability to cope as the 
data velocity increases. Optimizations for these and future identity-deception detection tech-
niques are proposed for large-scale social-media platforms that can help mitigate the computa-
tional overload when monitoring systems in real time. Given the scope and size limitations of 
this article, the approach taken is theoretical and aims to open a discussion on novel approaches 
where real-time detection systems can be made possible for social-media platforms.  

IDENTITY-DECEPTION ATTACKS 
The social-media identity-deception attacks that this paper considers are identity theft and iden-
tify forgery. These involve generating accounts and employing identity management,4 as well as 
behavioral strategies (such as navigating to a particular page) aimed at deceiving others. Identity-
management strategies are context-specific and begin with the selection of login credentials and 
subsequent editing of various attributes associated with the account (such as age and employ-
ment). Table 1 shows categories and examples of such attacks. Identity creation describes sce-
narios in which a legitimate identity in real life does not exist in an online platform (such as 
Facebook), yet the attacker creates the identity based on the data available from other sources.1 
Profile cloning involves cases in which a legitimate identity is present and cloned.3 Disruption 
attacks are direct in their nature (such as spamming on a page until banned), and attackers often 
expect to be caught. Sockpuppetry, on the other hand, involves attacks that are more sophisti-
cated; often, a puppeteer’s account is also present in the platform (albeit probably banned).5 Fi-
nally, Sybil attacks are a special case of sockpuppetry with a network-centric focus.6 Multiple 
identities are generated towards achieving an often long-term goal.  

Table 1. Identity-deception attacks. 

Category  Subcategory  Examples  

Identity theft  Identity crea-
tion 

Trojan horse (such as seeking to gain access to the 
identity’s network) 

Profile cloning Phishing and scamming 

Identity for-
gery  

Disruptive at-
tacks  

Trolling (such as misinformation and annoying mes-
sages)  

Sockpuppetry  Spreading propaganda, phishing, scamming, and cir-
cumventing bans  

Sybil attacks Increasing reputation, skewing votes, and reviewing 
scores 

 

IDENTITY-DECEPTION DETECTION METHODS 
Several methods have been proposed to detect identity-deception attacks. Some have explicitly 
aimed at targeting a particular identity-deception category, while others need to be generalized. 
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This paper classifies methods based on the major approach or theory that guides the detection 
method.  

Immediate-Comparison Methods 
Methods that fall under the immediate-comparison category aim to primarily identify cases of 
profile cloning, sockpuppetry, and Sybil attacks. The general approach compares data directly 
from a user’s account to an existing set of users. It aims to identify cases in which duplicate ac-
counts exist in the system or in which mismatched information exists about a user. The approach 
can further be divided based on the types of data utilized (verbal and/or non-verbal).  

Profile-based methods 

Profile-based methods aim to cross-validate account profiles with an existing set of users. The 
features can be verbal (text) or non-verbal (such as duration between actions). A tested approach 
using profile-based features identified duplicate accounts in a criminal database.7 Duplicate rec-
ords in the data were suspected to be the result of individuals who may have reported false 
names under separate arrests. The technique traversed through the list, and each record’s profile 
was compared to the rest of the dataset to identify cases based on a profile score and a particular 
threshold. The technique was highly effective even in the presence of missing data. However, the 
original method’s time complexity was high (asymptomatic time complexity of O(N) for check-
ing a new user against the total user set). The overhead of such a technique could be larger if 
profile scores for users have to be updated when an account change occurs (such as employment 
information updated).  

A similar approach was used in the social-networking site LinkedIn.3 The technique utilized pro-
file-based features to identify cases of manual or automatic profile cloning through bots. The 
method was proposed as a comparison tool meant to be utilized by a user. It analyzed a user’s 
profile and, using LinkedIn’s search, attempted to find profiles that may have cloned part of the 
original. If it were to be applied for all accounts based on real-time changes on accounts, the 
method would offer high precision at the expense of computational overheads. The estimated 
time complexity of the method requires an account to be tested against the rest of the dataset 
(O(N)).  

Profile-based features can also be used to cross-reference the validity of an account on a social 
network, A, using information found in a set of anonymized social networks, AGi.8 The trustwor-
thiness of features for an account can be evaluated based on anonymized social networks that 
also contain the account under investigation. The method demonstrated a high accuracy for vari-
ous network structures; however, the computational overhead of a part of the proposed algorithm 
had a worst case of O(|N|2) in respect to the nodes in A.  

Verbal-only methods 

An alternative approach compares a particular account to the rest of the dataset based on verbal 
communication. This approach allows for identification of not only cases regarding profile clon-
ing but also cases of sockpuppetry and Sybil attacks.  

The approach has been used on Wikipedia to identify sockpuppet accounts.5 The authors built a 
natural-language-processing algorithm that analyzed lexical features for a set of Wikipedia ac-
counts to detect likely sockpuppets. The accuracy of the method is considerably high; however, 
the computational overhead is also high. Comparing a user to all other accounts will result in a 
time complexity of O(N). But, unlike profile-based approaches, an algorithm will have to trav-
erse for each user, Ni, through all account content, Ri (revisions on article pages in the case of 
Wikipedia). Effectively, the operation translates to a comparison of all revisions made by users. 
If no index is used, an algorithm will result in a complexity of O(N ∗ R), while if a binary search 
tree is used for the revision dataset, the complexity can be reduced to O(N log R). Platforms such 
as Twitter have considerably higher proportions of user-content pairs than Wikipedia, rendering 
the real-time application of this method more impractical.  
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Baseline Methods 
Methods under this category relate to the expectancy-violations theory. The theory looks at how 
individuals react to unexpected behavior (such as evidence of deception unintentionally leaked 
by a deceiver). This is translated to a computer deception detector—often using machine-learn-
ing algorithms—that is looking for violations of expected behavior, which can often reveal de-
ception. In particular contexts, one can identify a “universal” expected legitimate user behavior, 
which serves as a baseline. Deviations from this baseline are considered deceptive cues and in-
dicative of identity deception. Contrary to immediate-comparison approaches, baseline ap-
proaches require a previously established supervised learning model that is often the result of a 
particular machine-learning algorithm. The quality of the model and that of the training data will 
influence the effectiveness of the baseline and the prediction accuracy of a model. These models 
are more effective at resolving most of the identity-deception cases such as scamming and sock-
puppetry. Approaches under this category are further divided into verbal, non-verbal, and hybrid.  

Verbal methods 

Verbal approaches utilize the content delivered by an individual and look for deceptive cues that 
are known to be associated with deceptive behavior. Often, these relate to lexical, prosodic, or 
even sentiment features of speech, whether written or audible.9 These methods have been exten-
sively applied to spam detection and website scamming attacks.10 In social media, the approach 
restricts the attention of the detection algorithm to one account and focuses on verbal data pro-
duced from the account. These methods can be extremely effective, as well as computationally 
efficient (O(C) where C is the content produced by a particular user) since they examine only 
content produced by one individual. However, their effectiveness is also dependent on the nature 
of the social-media platform. For example, sentiment analysis in short text is less accurate,11 so 
the effectiveness of the method may be limited on Twitter.  

The method has been found to be effective in the field of forensics in distinguishing adults pos-
ing as children on social networks.12 Training data establish a baseline for age and gender by uti-
lizing a combination of natural language processing and stylistic language fingerprinting. The 
approach is highly effective and efficient.  

Non-verbal methods 

Non-verbal approaches work in a similar manner. They include metadata, summarized actions of 
an individual, and even metrics that represent user actions or behavior within a particular plat-
form’s cyberspace. They have been found to be effective and computationally efficient.13 In the 
event that some of the summarized data have already been pre-calculated, the methods can be 
substantially more efficient than verbal natural-language-processing approaches.  

Hybrid methods 

Recently, a hybrid approach in which verbal and non-verbal data are combined under one super-
vised learning model has been proposed, although results have not yet been reported.14 It is 
likely that the method could potentially be more effective at detecting identity deception at the 
expense of efficiency (due to the need for more data processing).  

Hybrid Approaches 
Recent techniques have attempted to combine the two broader categories to detect identity de-
ception. This is often achieved on the basis of generating a baseline model; however, it often also 
involves immediate comparisons to existing accounts or other data on the platform. An example 
of this can be seen through the use of social-network analysis. When a particular user ui needs to 
be tested for identity deception, a graph G is built for all users V and connections E between 
them. Connections can be based on friendships but can also consist of any connection deemed 
important for an online community (such as followers on Twitter and common articles edited on 
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Wikipedia). The user’s profile in G is compared using various social-network metrics (such as 
closeness centrality) in respect to all users in V. Then, using a baseline, a decision is rendered on 
whether the “profile” of ui matches that of known identity-deception accounts. The decision can 
be made using supervised learning algorithms or based on an arbitrary metric and a particular 
threshold.  

A recent study has identified, with high precision, Sybil attacks using social-network data.6 The 
approach utilized a graph to determine the probable clusters of Sybil and non-Sybil accounts. 
The time complexity of the approach was O(n log n). The computational benefits of this ap-
proach are based on the fact that it examined the degree of a vertex as opposed to more computa-
tionally intensive graph metrics. A similar study proposed a graph approach using a game-
theoretic model to explain deception.15 The study demonstrated the rich potential of utilizing so-
cial-network data for deception detection. Implementing similar techniques in real time holds 
great potential but also poses substantial computational challenges.  

REAL-TIME POTENTIAL DETECTION METHODS 
This paper posits that, to utilize these methods in real time, one has to consider three primary 
factors that influence their efficiency: the number of users on a platform, technology infrastruc-
ture, and data velocity. Figure 1 depicts a representation of a hypothetical real-time implementa-
tion of an identity-deception detection system on social media.  

 

Figure 1. Depiction of an identity-deception detection system on a social-media platform intended 
to be used for real-time monitoring. 

Social-media platforms vary substantially in respect to their user volumes. This will also have an 
impact on data volume that has to be analyzed by a particular identity-deception detection algo-
rithm. When this needs to occur in real time, the size of the user population may be restrictive for 
some methods unless optimizations are considered. Additionally, the computational overhead 
can vary between the methods presented. The overhead may also be influenced by the existing 
infrastructure. For example, real-time applications have been said to require an active stream that 
provides an algorithm with the latest changes, but there is also a need for seamless access to 
older data.16 If a requirement is not met, some of the methods cannot feasibly be implemented 
for real-time detection. Finally, when discussing real-time application, data velocity is perhaps 
the most important factor. For the purposes of this paper, data velocity is defined as the intensity 
of change in the data. Although different measurements may be used depending on the social-
media platform, data velocity describes the flow of data over time. For example, in the context of 
Twitter, this may be translated as the number of tweets per second. Data velocity will influence 
the number of times a detection method needs to be executed over a time interval.  
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Baseline methods are the most efficient. They are independent of the number of users on a plat-
form and require limited support by infrastructure. As such, they can afford to be used in plat-
forms with higher data velocities. Immediate-comparison approaches, on the other hand, can be 
heavily influenced by the total number of users. As such, when data velocity is high, they will 
suffer from redundancies that will make real-time application improbable for large social-media 
platforms. Finally, hybrid approaches are by far the most expensive methods for identity-decep-
tion detection. As the total number of users rises, so does the need for substantially more infra-
structure to support data processing. For example, social-network analyses are notorious for the 
memory requirements as graph sizes grow. Each user tested is required to be added to the exist-
ing graph, and many metrics will have to be recalculated for all vertices in a graph. Few metrics 
are not bound by the need for calculating the same metric for all vertices.  

OPTIMIZATIONS FOR REAL-TIME OPERATION 
This paper identifies several optimizations that can help overcome some of the aforementioned 
limitations while attempting to preserve most of the effectiveness. The estimated impact on ef-
fectiveness is reported based on the literature. The optimizations are meant to be representative, 
but not exhaustive.  

Window Optimization 
This optimization aims to apply restrictions on the visibility of data, which effectively reduces 
the amount of data and the computational overhead while attempting to limit the loss of infor-
mation—which may cause a reduction in an algorithm’s detection accuracy. These methods can 
impact efficacy positively or negatively depending on the context and the bounds of a system. In 
the context of real-time detection, it can be further divided based on its application on an active 
stream of data or complete dataset.  

Applying window on stream 

While many real-time applications rely on a stream to monitor changes, some attempt to store 
the most recent set of changes based on a window.16 This helps reduce the need to query old data 
directly from a database and provides data available for immediate analysis. The size of this win-
dow can be determined based on time (such as changes during the past day) or based on data 
(such as most recent 1,000 changes). The optimization can benefit baseline approaches, espe-
cially in contexts in which recent behavior can be more indicative of a deceptive account than 
the complete history of an account. However, the optimization is not applicable to methods that 
rely on account history, as well as immediate-comparison and hybrid approaches.  

Applying window on dataset 

Methods that rely on accessing past records of data (aside from the active stream) can also be 
optimized based on windows. Like with the previous optimization focused on the stream, win-
dows can be applied in relation to time or data. The impact of this optimization can radically re-
duce time complexity for algorithms. For example, a window has been used for detecting 
duplicate records on a criminal database that reduced the time complexity from O(N) to O(log N) 
when testing for a particular user.7 This came at no cost to efficacy. Similar windows can benefit 
social-network analysis. For example, localized graph statistics can be calculated based on a re-
stricted view of the overall network based on an n-step reach from the particular user to be 
tested. This reduces the amount of vertices in a graph and the computational overhead. Finally, 
the method may yield higher efficacy in baseline approaches, because it could reduce the error 
caused by the assumption that a community exhibits uniform behavior. As users change behav-
iors over time, establishing a baseline on recent data may be a more effective strategy.  
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Adaptive window optimization 

Window optimization can be taken a step further. This is often overlooked by literature since the 
aim is to demonstrate primarily effectiveness of an approach rather than efficiency for real-time 
implementation. However, social media do not have a static number of users nor a static data ve-
locity. For example, catastrophes can often result in users becoming more active on social-media 
platforms such as Twitter. Bursts of activity can potentially impact an otherwise functioning 
real-time deception-detection system. If windows are applied as an optimization technique, hav-
ing them automatically adjust their size based on data velocity will likely render them more effi-
cient. The tradeoff of accuracy (or inaccuracy) due to limited data can further be remedied by 
using an adjustable penalty on the probability that an account is deceptive.  

Monitoring only Non-Cleared Accounts 
This optimization aims to reduce computational overhead without impacting efficiency. It is 
ideal for baseline methods and can be applied on the stream of data. Actions that come from ac-
counts that have already been cleared as non-deceptive accounts do not have to be monitored. 
This is likely to occur after an account has been monitored for a said time. For example, a study 
that used baseline behavior determined that deceptive and legitimate accounts’ non-verbal data 
tend to increasingly deviate from one another with the age of accounts.13 As such, administrators 
may decide that an account could be considered cleared after N days of repeatedly “clean” activ-
ity. Another study has also reported no cost to accuracy by establishing a trusted set of accounts 
(or trusted features of accounts).8 However, a more accurate restriction in most social media 
would be to clear an account on the basis of actions made by a user, rather than of time. This is 
because an account can often be old but have limited activity.  

Probabilistic Sampling 
The aim of sampling is to reduce computational overhead; however, it can come at the expense 
of effectiveness. It can be applied to immediate-comparison, baseline, and hybrid methods. The 
implementation can be established on the stream of data and the dataset. The method is similar to 
those found on airport security random checks or tax-fraud detection. Since real-time deception 
detection iterates upon the actions made by a user, the likelihood that a deceptive account will be 
selected over time increases as a user’s actions increase. As such, in a uniform random sampling 
strategy, a balance between the probability threshold and the frequency can balance the probabil-
ity of eventual detection. Use of probabilistic sampling using game theory can also be a more 
effective alternative to uniform sampling strategies. Bayesian Stackelberg games have been 
shown to be effective at preventing an adversary from guessing a random strategy, as well as at 
providing defenders with the ability to add weights to different types of likely adversaries based 
on the severity of damage they can inflict (such as vandalism versus sockpuppetry attacks).17 
Furthermore, the efficiency of the optimization can be affected by the size of the user population. 
It can be adapted to adjust to data velocity or remain independent, although the latter may impact 
detection accuracy.  

Landmark Optimizations 
Several approaches that involved social-network analyses15,18 can also be optimized through im-
provements to navigational operations in graphs. Often, proximity of an account to other ac-
counts on a graph can be indicative of identity deception. Distance calculation in large graphs 
found in social-media platforms can be expensive. Instead, if landmark nodes can be selected 
ahead of time (preprocessing), computational overhead can drastically decrease.19 The expense 
of this optimization is the reduced accuracy of a path calculation; however, it can often be negli-
gible depending on the method selected (some also allow for exact estimation). The optimization 
can be beneficial as the user population grows, since it mitigates the impact of data velocity. It 
also reduces computational overhead for the infrastructure supporting the detection system.  
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BALANCING EFFICIENCY AND EFFECTIVENESS 
Attaining an ideal balance between efficiency and effectiveness is a considerable challenge that 
pertains to the application of these optimizations. At a low level, all these methods aim to reduce 
computational complexity by reducing the data volume that is expected to be parsed by a detec-
tion method, which in turn reduces infrastructure requirements. In practical terms, the processing 
capacity of the detection system needs to be equal or larger to the growth rate of accounts. In so-
cial-media applications, the user population often exhibits a growth that follows an exponential 
trend before transitioning into a long logarithmic tail (for example, Wikipedia’s user population 
growth). Since the underlying system (user population) is finite, the trend over time is often sim-
ilar to that of probing rates seen by internet worms (for example, Slammer). As such, detection-
system optimizations are most useful early on the lifecycle during the linear or exponential 
growth of a population in which the system will be under the most stress. The loss in detection 
rates (effectiveness) can be compensated for by either adjusting parameters for these methods or 
combining them. Some of the tradeoffs and benefits of these optimizations are described below.  

Window optimizations reduce computational requirements at the cost of lower effectiveness due 
to data-volume reduction. However, accuracy may not be affected in the event that data quality is 
high (such as when there is no missing data) and there is low variance in the data.—in other 
words, when the difference between attacker and legitimate user is “distinct” in the data. This 
will also depend largely on the context and how user actions are recorded and compared. For ex-
ample, we would need larger data windows to determine differences in writing style compared to 
measuring a user’s average time between actions. This is also relevant for cases of weak models 
(high bias) that do not benefit from the addition of more data.  

Clearing accounts after passing a certain trust threshold can also benefit the system from repeat-
edly evaluating the same users. However, in this approach, false negative accuracy for detection 
methods becomes particularly important (eliminating doubt on cleared accounts). This reversal 
in perspective may also require changes in the methods since the aim is not to detect but rather to 
establish trust. Computationally, the optimization holds promise even if the influx rate of new 
users surpasses the “clearing” rate. By reducing the threshold for false negatives, the detection 
system will require fewer resources at the cost of allowing some adversaries to pass undetected.  

A similar challenge can also be observed with probabilistic sampling. Random sampling rates 
have a linear relationship with detection rates in respect to the user population. As such, the com-
putational gains and loss of accuracy are directly comparable. However, the relationship between 
efficiency and effectiveness becomes more promising when sampling is informed on the basis of 
indicators (for example, if an account registers in the middle of the night, it is more likely to be a 
deceiver). As such, biased sampling will likely retain more of the unsampled effectiveness while 
exhibiting an equal reduction in computational complexity compared to random sampling.  

Finally, landmark optimizations in networks hold the potential for reducing processing require-
ments for graph statistics by building shortcuts for many of the calculations. These often have 
parameters that define how aggressive algorithms should approximate measurements (such as 
shortest distance). The relationship between measurement error and landmark parameter size will 
determine resource requirements and accuracy. In some algorithms, this relationship follows a 
near-linear trend,20 and so establishing the loss in effectiveness can be more easily estimated. 
This is also dependent on how important network statistics are in the original detection method.  

CHALLENGES AND OPPORTUNITIES 
Identity-deception detection approaches are summarized in Table 2 based on the main purpose 
and real-time factors that can affect them along with applicable optimizations. Real-time applica-
tions for these methods can vary. Most optimizations fit almost all approaches proposed in this 
paper. The impact on detection accuracy by these optimizations is mainly determined by how 
aggressive their said parameters will be. Further challenges described in this paper relate to the 
use of baselines in real-time detection methods and identity management.  
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Interpersonal deception theory posits that a deceiver’s behavior changes over time and adapts 
based on a victim’s responses and environmental factors.21 These changes are made by a de-
ceiver to ensure deception success. Current deception-detection methods do not look for these 
temporal adaptations in an account’s profile (verbal and non-verbal). Instead, they focus on an 
account’s complete history. However, since accounts are tracked constantly in real-time monitor-
ing, these changes in behavior can be captured and incorporated into algorithmic models. These 
moves and counter-moves can be used to estimate an attacker’s behavior even in active defense 
scenarios.  

Table 2. Identity-deception detection approaches and proposed optimizations. 

Identity-Deception De-
tection Method  

Ideal for  Factor(s) with Larg-
est Impact  

Optimizations  

Immediate-comparison  Profile clon-
ing  

Sockpup-
petry  

Sybil attacks 

User population  

Data velocity 

Window optimization 
on stream  

Window optimization 
on dataset  

Adaptive windows  

Probabilistic sampling 

Baseline  Identity cre-
ation  

Disruptive 
attacks  

Sockpup-
petry 

Data velocity Window optimization 
on stream  

Window optimization 
on dataset  

Adaptive windows  

Probabilistic sampling  

Monitoring only non-
cleared users 

Hybrid  Profile clon-
ing  

Sybil attacks  

Sockpup-
petry  

Disruptive 
attacks 

User population  

Data infrastructure  

Data velocity 

Window optimization 
on stream  

Window optimization 
on dataset  

Adaptive windows  

Probabilistic sampling  

Landmark optimiza-
tions 

 

Furthermore, baseline approaches often track behaviors in binary form (deceptive versus non-
deceptive account) and assume that all individuals need to behave in accordance to an estab-
lished baseline. An attacker may be able to trick a detection system by acting legitimately until 
such time when an attack takes place. Looking for leakage cues may be a more effective and 
computationally efficient method, but current machine-learning algorithms need large amounts 
of training data from multiple users and as such are problematic in their application for a single 
user. Alternative cognitive or game-theoretic models may need to be developed that more closely 
reflect the internal state of individuals and look for subtle deviations from a predicted legitimate 
user behavioral path.  

Subsequent identity-management approaches that share cross-platform data will need to be de-
veloped. Cross-referencing across datasets has been proven to be effective in past studies and can 
help act as an initial security measure for newly created accounts. This is especially true for 
cases of identity creation. However, the approach may be limited for cases of identity forgery in 
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which pseudonymous accounts are allowed by a platform. In such cases, access-control protocols 
(such as gradually granting privileges to a user) based on real-time trust-management systems 
may prove to be more effective. An attempt by a user to access a feature beyond the limits set by 
a system may be an early indicator of the user being an attacker.  

Finally, identity-deception prevention can also decrease computational overhead for algorithms. 
Currently, attempts towards “universal” login credentials through social-media logins and other 
services such as OpenID aim to accommodate a user demand for a reduction in login credentials. 
However, these logins could potentially offer summarized identity-deception detection infor-
mation derived from various websites that they have been used in. Such standardization of relia-
ble identity data (such as times during which or locations from which an individual usually 
operates) will require extensive studies and collaborations across scientific fields. If successful, a 
new account created on Facebook for use in other websites will have to demonstrate its legiti-
macy through its activity pattern on Facebook (or whichever other social login is used).  

CONCLUSION 
Over the course of a decade, progress has been made in not only understanding how deceivers 
operate online in social media but also how their behaviors can be tracked and identified. How-
ever, successful approaches and algorithm lack plans for implementation in realistic large-scale 
social-media platforms. This paper describes a classification of existing deception-detection ap-
proaches and proposes factors and optimizations that need to be considered for a real-time imple-
mentation of these approaches in social media. These recommendations call for a re-examining 
of detection approaches and their potential use in social media. Given the rapid growth of social 
media and data velocity, it is likely that technology will not save these detection approaches, but 
rather will offer innovative new ways to make them practical for real-time applications.  
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FEATURE ARTICLE: Cloud Services 

Efficient Cloud 
Provisioning for Video 
Transcoding: Review, 
Open Challenges, and 
Future Opportunities 

Video transcoding is the process of encoding an initial 

video sequence into multiple sequences of different 

bitrates, resolutions, and video standards, so that it 

can be viewed on devices of various capabilities and 

with various network access characteristics. Because 

video coding is a computationally expensive process 

and the amount of video in social-media networks 

drastically increases every year, large media 

providers’ demand for transcoding cloud services will 

continue rising. This article surveys the state of the 

art of related cloud services. It also summarizes 

research on video transcoding and provides indicative 

results for a transcoding scenario of interest related to 

Facebook. Finally, it illustrates open challenges in the 

field and outlines paths for future research. 

As reported by Cisco in its mobile-data-traffic forecast for the years 2015 to 2020, mobile Inter-
net traffic increased by 74% during 2015, with 55% of it due to video.1 Given the popularity of 
social media, the affordable prices of smart devices with high-resolution cameras, and the ever-
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lasting user need for social interaction and entertainment, video traffic on the Internet, particu-
larly the mobile one, will continue rising. To further complicate things, large media providers 
have to satisfy clients viewing video from a plethora of different devices with various players 
and capabilities that reside behind network connections of various speeds. This necessitates 
video transcoding, which is the process of encoding an initial video sequence into one or more 
sequences of different resolution levels, bitrates, quality, and perhaps coding standards—e.g., 
from H.264/AVC to HEVC. (AVC stands for Advanced Video Coding; HEVC stands for High 
Efficiency Video Coding.) 

In its simplest form, transcoding can be done by decoding the original video and re-encoding it 
using the desired parameters. Since video encoding is a computationally intensive task, and 
given that the amount of video that must be transcoded before delivery can exceed the infrastruc-
ture capacity of most media providers, using cloud resources seems to be the only scalable solu-
tion. Figure 1 shows schematically a generic cloud-transcoding scheme. 

 

Figure 1. A generic cloud-transcoding architecture. The initial FHD (Full High Definition) video 
sequence is sent to the transcoding cloud, which produces output sequences in three different 
resolutions. These sequences are sent for delivery to various devices. SIF stands for Source Input 
Format. 

TRANSCODING AS A SERVICE 
A straightforward approach to use cloud resources for transcoding is the IaaS (infrastructure as a 
service) model, whereby the user should estimate the computational resources required for the 
tasks; select a codec to use; create, schedule, and monitor job batches; and manage the output 
streams. This solution entails a non-negligible overhead in specialized personnel costs. 

This is why recent years have witnessed a growth in the number of companies offering PaaS 
(platform as a service) or SaaS (software as a service) solutions, effectively implementing trans-
coding as a service (TaaS). TaaS aims to reduce the complexity, from a client’s point of view, of 

• defining transcoding tasks, 
• executing them, and 
• managing their output. 

Concerning defining transcoding tasks, the client is offered predefined encoding modes either 
optimally tailored for specific devices or tailored for particular resolutions. Such predefined 
modes can be of huge help to small-scale clients who can’t afford the complexity of defining op-
timal encoding parameters—e.g., bitrate or QP (Quantization Parameter)—for their targeted res-
olutions. Large media providers can still use their home settings, ignoring the predefined modes. 
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As far as executing transcoding tasks is concerned, the client is neither required to know the de-
tails of the codec used nor required to schedule its tasks. Finally, concerning managing the trans-
coding tasks’ output, TaaS providers can forward videos to a content delivery network after 
packaging them so that they are ready for streaming—e.g., in MPEG-DASH (Dynamic Adaptive 
Streaming over HTTP) or HLS (HTTP Live Streaming). Most providers also offer watermarking 
and DRM (digital rights management) capabilities, as well as options for adding advertisements. 

A distinguishing factor among TaaS solutions is whether they offer file or live video trans-
coding. Another distinguishing factor is the pricing schemes they use. In the case of file-trans-
coding solutions, providers usually charge for either the output video duration or the output 
video size, while in live video transcoding, a consumed-bandwidth or per-channel charge is used. 

Table 1 summarizes some basic characteristics of related services and gives estimated charging 
costs for two scenarios: one involving live transcoding and another stemming from VoD (video 
on demand). The table is not intended to provide a selection list; it doesn’t include all the possi-
ble providers and solutions, while pricing isn’t the single decision criterion. Furthermore, prices 
usually don’t scale linearly to workload size and might also be negotiable. 

Table 1. Some cloud-transcoding services. 

Company1 Codecs Pricing 

Cost for 
file-en-
coding 
sce-
nario2 
($) 

Cost for 
live-
stream-
encod-
ing sce-
nario3 
($) 

Brightcove Zen-
coder 

H.264/AVC, 
VP8, VP9, The-
ora, HEVC 

Output duration, live 
channel duration 

360 N/A 

Encoding.com 
PublicCloud 

H.264/AVC, 
VP8, Theora, 
HEVC 

Output size, per-chan-
nel flat price 

1,250 899 

Amazon Elastic 
Transcoder 

H.264/AVC, 
VP8, VP9 

Output duration 180 N/A 

Telestream 
Cloud 

H.264/AVC, 
VP8, VP9, The-
ora, HEVC 

Output duration 239 N/A 

Wowza Stream-
ing Cloud 

H.264/AVC, 
HEVC 

Processing time, out-
put size, per-channel 
rate, no. of streams, 
stream duration 

N/A 856 

Microsoft Azure 
Media Services 

H.264/AVC, 
Theora, HEVC 

Output size, live chan-
nel duration 

180 801 

Bitmovin 
H.264/AVC, 
VP9, HEVC, 
AV1 

Output size 156 468 

1. The information is based on companies’ websites. In the price-charging scenarios, the most economic 
package was selected. Prices are for coding; other charges such as storage, transmission, etc. might apply. 
2. The scenario consisted of transcoding 100 hour-long videos into 100 FHD (Full High Definition) output 
sequences. Each output sequence was estimated to be 25 Gbytes. 
3. The scenario consisted of setting a live stream. The input stream was assumed to be transcoded into a sin-
gle output stream of FHD quality. The total channel duration considered was 300 hours monthly. 
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THE CASE OF SCALABLE VIDEO CODING 
A problem with transcoding is that a single video sequence leads to multiple output files. Scala-
ble Video Coding (SVC) aims to solve this problem by coding in one bitstream multiple fidelity 
points of the original video signal. The fidelity points can be the temporal resolution, spatial res-
olution, or quality (the signal-to-noise ratio—SNR). 

Thus, the bitstream comprises layers—i.e., subsets of the bitstream that represent the additional 
information needed to be able to decode the signal at an increased quality. Layers form a hierar-
chy whereby a specific layer needs all the lower ones it refers to, in order to be decoded. There-
fore, each layer, in combination with the layers it depends on, forms a representation of the video 
signal in a specific spatial–time resolution and quality. 

For a detailed overview of SVC extensions in H.264/AVC, see “Overview of Scalable Video 
Coding Extension of H.264/AVC Standard.”2 SVC has seen some successful deployment in the 
industry—e.g., Vidyo’s conferencing service. Nevertheless, it hasn’t replaced transcoding owing 
to its lack of popularity and interoperability difficulties. Additionally, transcoding is necessary 
when changing the video standard. 

RESEARCH ON CLOUD TRANSCODING 
Most TaaS providers don’t give details concerning algorithms and system architecture design. 
So, we focus here on surveying research from academia. 

Efficient Transcoders 
A significant amount of work exists on how to efficiently implement transcoders. When the re-
quirement is to produce a video sequence in the same format but presumably at a lower bitrate 
(also called transrating), a straightforward yet inefficient approach is to use an open-loop 
method whereby the decoded sequence is re-encoded using larger QP values. Closed-loop meth-
ods involving error compensation have also been proposed. A survey on transrating can be found 
in “Video Transcoding: An Overview of Various Techniques and Research Issues.”3 Of particu-
lar interest is the case in which a sequence must be transcoded using different video standards. 

In “Fast Video Transcoding from HEVC to VP9,” the authors propose a scheme for transcoding 
HEVC to VP9.4 By exploiting information from the HEVC decoding process (mainly, the Intra 
and Inter prediction modes and the reference frames), they pruned decisions of a VP9 encoder, 
improving the time up to 60%. 

In “Fast H.264 to HEVC Transcoder Based on Post-order Traversal of Quadtree Structure,” an 
H.264/AVC-to-HEVC transcoder is presented.5 The proposed scheme achieves a speedup of 
7.89 times compared to full re-encoding, while the coding efficiency loss is 3.28% BD-Rate. 
(BD stands for Bjøntegaard’s Delta.) This speedup is achieved by two modifications in the 
HEVC encoder. First, a fast mode decision framework based on a post-order traversal of the 
CTU (Coding Tree Unit) quadtree is proposed. This framework, in combination with information 
from the H.264/AVC sequence and a modified RD (rate distortion) cost prediction model, 
achieves early termination of the mode decision process. Second, a new fast motion estimation 
algorithm is implemented that selects the best candidate from a list of previously encoded 
H.264/AVC and HEVC motion vectors. 

Another H.264/AVC-to-HEVC transcoder is presented in “Fast Quadtree Level Decision Algo-
rithm for H.264/HEVC Transcoder.”6 Once again, the target is to accelerate the mode decision 
process in HEVC by using information available in the H.264/AVC sequence. This is done by a 
Fast Quadtree Level Decision (FQLD) algorithm. FQLD exploits the information gathered at the 
H.264/AVC decoder to decide on CU (coding unit) splitting in HEVC using a naive Bayes prob-
abilistic classifier. The results show that a speedup of up to 3.98 times is achievable without sig-
nificant RD loss. 
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System Design and Scheduling of Transcoding  
Jobs in the Cloud 
In Video Processing in the Cloud, a MapReduce approach for video encoding is described.7 The 
method is based on 

• splitting an initial sequence into chunks, whereby the chunk size is a multiple of GOP 
(Group of Pictures) size; 

• processing each chunk separately; and 
• merging them in a final step to produce the final compressed video sequence. 

Instead of having a fixed number of GOPs per chunk, the authors of “Dependency-Aware Dis-
tributed Video Transcoding in the Cloud” propose to adapt the chunk size.8 The premise is to 
avoid breaking dependencies (at chunk boundaries) between GOPs of the same scenery. 

In “Cloud Transcoder: Bridging the Format and Resolution Gap between Internet Videos and 
Mobile Devices,” a cloud-based transcoding system is presented.9 The system architecture con-
sists of 

• a task manager that accepts user requests and checks whether they can be satisfied by 
the cached files, 

• transcoding servers, 
• downloaders that are responsible for locating and fetching a video that isn’t already 

cached, and 
• a task dispatcher controlling the rate of downloading and transcoding activities. 

A significant part of transcoding tasks is performed during light load periods (e.g., nighttime) as 
a prefetching strategy. 

In “ME-VoLTE: Network Functions for Energy-Efficient Video Transcoding at the Mobile 
Edge,” the authors propose a system architecture that enables video encoding at the edges of a 
mobile network.10 They show that energy savings in mobile devices can be achieved by shifting 
some of the encodings toward edge servers. The core of their proposal is to tune the sending de-
vices to encode videos at a high bitrate, fast, thus saving energy (but consuming larger band-
width). The videos will then be transcoded at the edges for final delivery. 

The focus of “Optimizing the Video Transcoding Workflow in Content Delivery Networks” is to 
reduce the computational load of transcoding.11 For each video (or the popular ones), the first 
chunk is transcoded in an offline manner to reduce buffering. The remaining chunks are trans-
coded in an online manner using a Markov chain estimator that decides which video parts will be 
needed once downloading starts. 

Partial transcoding is also the focus of “Towards Cost-Efficient Video Transcoding in Media 
Cloud: Insights Learned from User Viewing Patterns,” whereby the aim is to optimize the long-
term operational cost of a video delivery service.12 This cost comes in terms of storage by cach-
ing transcoded video segments and in terms of the computational effort due to transcoding un-
cached segments. An online algorithm is proposed that decides which segments should be 
cached on the basis of Lyapunov optimization and queuing theory. It is shown that the opera-
tional cost can be reduced by 30%. 

An admission control algorithm for transcoding requests arriving at a cluster is proposed in 
“Stream-Based Admission Control and Scheduling for Video Transcoding in Cloud Compu-
ting.”13 The algorithm might choose to either accept a transcoding job if servers’ working queues 
are lightly loaded or defer the request, redirecting it to an entertainment server. Deferred requests 
are rejected when the entertainment server becomes overloaded or are accepted in the next ad-
mission slot if the server queue length allows it. 

Live video transcoding is considered in “Transcoding Live Adaptive Video Streams at a Massive 
Scale in the Cloud,” focusing on the case in which sources don’t have strict high QoS (quality of 
service) demands.14 The authors analyze datasets from Twitch concerning livecasting and tackle 
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the problem of optimizing the user experience. A perfect user experience is achieved by trans-
coding to the maximum user-supported resolution and bitrate. The authors have developed an 
ILP (integer linear program) formulation to decide the formats to be transcoded for every stream, 
given the existing hardware. 

Research Summary and Discussion 
The aforementioned research targets optimization of the operation of transcoding clouds by 

• speeding up the transcoding time of a single task, 
• achieving predefined quality levels, 
• achieving real-time performance or performance based on a service-level agreement, 
• scheduling multiple transcoding tasks optimally, and 
• reducing resource and energy consumption. 

These goals often conflict with each other; hence, there is a need for further research to develop 
methods that achieve better tradeoffs. 

FUTURE CHALLENGES 
A number of future challenges exist, especially as more and more video traffic will concern se-
quences at 4K resolution. Here, we present some of them. 

Efficient Cloud Resource Management 
Research on cloud-transcoding resource management is far from being a closed topic, especially 
as energy consumption and network overhead become increasingly important. An urgent need 
exists for holistic approaches to system-level design and algorithmic concepts that tackle in a 
unified way different transcoding scenarios (e.g., standalone files, batches of VoD transcoding 
tasks, and livecasting), because the relevant market can’t be overlooked by TaaS providers. Such 
unified approaches should also include SVC (wherever applicable). It is also apparent that re-
search exploiting the potential of edge computing in minimizing network and computational 
overhead will be of paramount importance in an era of 4K and 8K resolutions. 

Per-Sequence Transcoding Ladders 
In most cases, media providers fix the bitrates and resolutions for transcoding (also called the 
encoding or transcoding ladder). As advocated by Netflix, one-size-fits-all is not necessarily the 
best approach.15 In fact, it was found that movies have different bitrate demands depending on 
their category. For instance, cartoons could be compressed with reasonable quality using less 
than half the bitrate of other movies. Research in this area, especially when combined with user-
perceived quality metrics, promises to reduce the bitrates of encoded videos without affecting 
quality. 

Adoption of Newer Video Standards 
Increased compression efficiency at the same quality is the premise behind any newly developed 
video standard. HEVC, together with AV1 (AOMedia Video 1) and the planned VVC (Versatile 
Video Coding), will form the state of the art of video-coding standards in the coming years. The 
compression performance of the new standards will likely trigger a surge in transcoding demand 
in the foreseeable future. 

The scale as well as the costs involved in the above endeavor could be massive. YouTube experi-
ences a workload of more than 300 hours of uploaded videos per minute. Assume that all the 
videos uploaded in a year must be transcoded in a new standard, with one output sequence per 
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input file. By using the pricing scheme of Amazon’s Elastic Transcoder, the total financial cost 
would be between $142 M and $284 M. If more output sequences were needed, the budget could 
scale in the order of billions. Computational demand will also be huge. Assuming the assigned 
virtual machines (VMs) achieve real-time performance (24 frames per second), 18,000 VMs 
working 24/7 for a whole year would need to be allocated. 

From a media provider’s point of view, research on efficiently using the available cloud re-
sources to maintain QoS in a cost-effective manner will be of primary importance. This will 
likely entail careful selection of the videos to be transcoded. As the next section illustrates, for a 
popular social-media network, this can be achieved at a relatively small cost. 

A FACEBOOK EXPERIMENT 
Here we characterize the impact on Facebook traffic by moving from H.264/AVC to HEVC. We 
used the x264 and x265 codecs for H.264/AVC and HEVC, respectively, with PSNR-tuned cod-
ing settings suggested by “A Large-Scale Video Codec Comparison of x264, x265 and libvpx for 
Practical VOD Applications.”16 (PSNR stands for peak signal-to-noise ratio.) Experiments were 
run over four identical servers, each with two six-core Intel Xeon E5-2630 CPUs at 2.3 GHz 
with 256 Gbytes of memory. 

The Dataset 
To the best of our knowledge, no suitable dataset existed for the experiment we wished to con-
duct. So, we created our own. We collected 200 Facebook videos by selecting the top 20 videos 
from each of the top 10 video publishers as they appeared in the rankings of May 2016 at 
https://tubularlabs.com. We downloaded each video in the highest-available resolution, which 
for 168 of the videos was 720p or higher. All videos were in the MP4 format. 

For the experiment, we performed transcoding by decoding each video using the x264 codec and 
re-encoding it in HEVC using x265. Table 2 details the video publishers, the dataset characteris-
tics, and the results of the transcoding experiment. 

Table 2. Transcoding a Facebook dataset into HEVC (High Efficiency Video Coding). 

Publisher statistics 

Names 
Tasty, UNILAD, The LAD Bible, Viechten met Daan, NowThis, 
Tastemade, FailArmy, CH51, PlayGround Video, Nifty 

Categories 
Food (2), Entertainment (1), News (4), Style & Beauty (1), Maga-
zine (2) 

Total no. of views in 
May 2016 (millions) 

9,304 

Dataset statistics 

No. of videos 200 (top 20 per publisher) 

Resolutions 23 different resolutions, 720p (82 videos), 1080p (62 videos)  

Total no. of views (mil-
lions)  

3,410 

Average no. of views 
per video (millions) 

17.04 

Total video size 
(Mbytes) 

1,352.66 
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Publisher statistics 

Average video size 
(Mbytes) 

6.76 

Total video duration (s) 11,984 

Average video duration 
(s) 

59.92 

Total no. of frames 325,962 

Total network overhead 
(Tbytes) 

24,509.52 

Transcoding results 

 

Total 
video 
size 
(Mbytes) 

Total network 
overhead 
(Tbytes) 

Average peak 
signal-to-
noise ratio 

Aggregate 
core utilization 
time (s) 

H264/AVC to HEVC 

708.21 

(47.64% 
reduction) 

11,435.19 

(53.34% 
reduction) 

44.35 14,272,397 

 

Before proceeding to the results, we discuss how well the dataset characterized Facebook traffic, 
using the following observations: 

• The total number of views for the top 10 publishers on May 2016 was 9,304 M. Using 
the average video size calculated in the dataset (59.92 secs), these views translate into 
approximately 5 M hours of video views per day. 

• Our dataset accounted for 36.6% of this volume. 
• As of January 2016, it was reported (at https://techcrunch.com) that an estimated 100 M 

hours of video were viewed daily on Facebook.17 

Even if the explosive growth of Facebook means that this value probably became much larger on 
May 2016, the top 10 publishers still accounted for a considerable ratio (5% with Jan. 2016 sta-
tistics), of which the dataset accounted for roughly one-third. Therefore, we can state that the 
collected dataset captured a sufficient portion of Facebook video traffic. 

The Results 

The experiment attempted to answer these two questions: 

• What would the gains be if instead of H.264/AVC, HEVC was used? 
• What are the related computational and financial overheads? 

To answer these questions, dataset videos were transcoded into HEVC using their original reso-
lutions. The results indicate that compared to H.264/AVC, the aggregate video size was reduced 
by 47.64%. Network overhead was calculated assuming that all views were for the maximum 
resolution and by counting only the video file sizes (the extra cost of network packaging was ra-
ther negligible). Table 2 records a reduction of 53.34% compared to the original sequences, 
while the PSNR remained high. 

The runtime results reflect the aggregated execution times of the transcoding tasks when using 
one thread each. In order to finish the 200 transcodings, the four available 12-core servers should 
work continuously at maximum core utilization (12 tasks per server) for 3.44 days. The C5 EC2 
instance is suggested by Amazon for computing demand tasks. (EC2 stands for Elastic Compute 
Cloud.) Because the PassMark ratio per core between the Intel Xeon Platinum CPU (c5.large) 
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and E5-2630 (our servers) is 1.34, it is expected that (all other things being equal) running the 
tasks on 24 c5.large instances (48 cores total) would require approximately 2.49 days, for an on-
demand cost of $137.68. Alternatively, by using a TaaS provider, the cost for transcoding the 
dataset—e.g., in the case of Amazon’s Elastic Transcoder—will roughly be $7. 

Bearing in mind that our dataset accounted for roughly 1.8% of one month’s total view load (as 
of Jan. 2016), the results indicate that social-media networks tailored for exchanging short-dura-
tion videos will benefit dramatically by moving to a newer standard. These benefits can be mate-
rialized by transcoding only a small portion of the most popular videos at low prices, using TaaS 
providers. 
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Low-Latency Networking: 
Architecture, Techniques, 
and Opportunities 

With the advent of delay-sensitive applications, low-

latency networking is attracting research attention from 

academia, industry, and standards organizations. This 

article analyzes the causes of latency across network 

architecture, reviews some state-of-the-art techniques 

to reduce latency, and presents several opportunities. 

The emergence of new applications and operational scenar-
ios places exacting requirements on latency. For example, 
high user-perceived latency in a cloud game deteriorates 
players’ interactions and degrades the user experience. In 
industrial operations, control systems depend on low net-
work latency, which is often required to be within several to 

hundreds of milliseconds to achieve real-time control.1 

However, the Internet was designed originally to provide best-effort delivery and does not guar-
antee any quality of service (latency included). In addition, network latency is impacted by many 
factors such as routing decisions and network traffic. As a result, achieving low network latency 
is a challenging but critical problem that has attracted great attention. For instance, the former 
chair of the Internet Engineering Task Force (IETF) discussed design choices of applications that 
require low latency from a system perspective.2 Moreover, a broad survey was organized to clas-
sify techniques by latency sources, which provided a comprehensive understanding of the root 
causes of latency.3 

Unlike previous taxonomies, we analyze latency and techniques by following layers of the network 
architecture, which naturally integrates with network standards. We attempt to present the issue of 
latency from an architectural perspective, and in doing so, we hope to facilitate the development 
of IETF standards. 

Both the requirements and the sources of latency vary with different functionalities on different 
layers. Utilizing services provided by lower layers, upper layers with more functionalities will 
introduce additional delay. On the application layer, many applications focus on the completion 
time of transmitting a data block that might consist of several packets. On the transport layer, if 
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reliable and ordered transmission is provided, retransmission delay and head-of-line (HOL) block-
ing are added on the basis of the round-trip time (RTT). 

Lower layers focus on the latency of delivering every packet. Routing on the network layer deter-
mines the paths, leading to queuing delay. The link layer is responsible for transferring datagrams 
between adjacent network nodes, where latency consists of channel access delay due to the shared 
medium. 

Here, we present a brief survey of network latency and approaches to reduce latency, particularly 
the delays resulting from the protocol design and functionalities. We first summarize factors im-
pacting delay from different layers of the network architecture. Then, we review some state-of-
the-art solutions to reduce latency at each layer. Finally, opportunities for future work and con-
cluding remarks are given. 

LATENCY ACROSS THE NETWORK ARCHITECTURE 
In this section, we analyze the main causes of latency at each layer of the TCP/IP architecture. As 
Figure 1 shows, each layer involves various functions that trigger latency, such as congestion con-
trol on the transport layer and routing on the network layer. To implement functions, related pro-
tocols have been designed, and mechanisms in these protocols introduce delays, such as TCP 
handshake delay or loss recovery delay. Note that latency and delay are used interchangeably in 
this article. 

 

Figure 1. Latency at each layer of the TCP/IP architecture. Different causes of latency and factors 
affecting latency are shown according to the network architecture. 

Latency Specific to Applications 
Applications with disparate design goals can have different sources of latency. One of the most 
important concerns of latency is the block completion time. Only when all units in the block (e.g., 
chunks of file transfers and frames in video streaming) are transferred to the receiver can the data 
be used by the application. In the following text, we take two typical applications as examples to 
introduce other sources of delay. 

Interactive live streaming demands low communication latency, which is different from the tradi-
tional video-on-demand application. Viewers who comment on broadcasts need immediate feed-
back; the Real-Time Messaging Protocol (RTMP) is applied to help achieve low latency. The end-
to-end delay from broadcasters to viewers adopting RTMP includes upload delay (the delay for 
transferring a frame from the broadcaster to the server), last-mile delay (the delay for transferring 
a frame from the server to the viewer), and client-buffering delay (the gap between the frame 
arrival time and frame playing time).4 The client buffer aims to prevent playout interruption, but a 
long buffering delay on the application layer is introduced, which accounts for the largest propor-
tion of the end-to-end latency. 
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For web services, the page-loading time can be defined as the duration from the receipt of the user 
request to the display of the whole page. Measurements and analyses have shown that latency 
plays a defining role concerning page-loading time as well as bandwidth.5 Factors that contribute 
to high latency on the application layer include the TLS/SSL handshake (required for secure con-
nections) delay, HTTP redirections (redirecting a client request to a different location), HTTP 
blocking (the waiting time caused by the maximum number of TCP connections to a server in a 
browser), and dependencies between web resources (evaluating previous objects and fetching new 
resources).6 

Latency of Data Transmission on Lower Layers 
The latency on the transport layer is determined by the transport mechanism. Reliable, ordered 
transmission incurs high latency; we focus on per-connection latency in this case. The per-con-
nection latency comprises the protocol handshake, which creates a connection setup delay that 
bears on the overall transmission delay, especially for short flows. Moreover, to ensure reliable 
and ordered delivery of a series of packets, the retrieval and retransmission of a lost segment incur 
a tremendous delay, which also produces HOL blocking by holding up subsequent segments. 

Routing is a core functionality of the network layer. Unlike the other sources of delay presented 
in this article, the latency of the routing operation generally has been neglected, but routing deci-
sions greatly impact latency. A selected path with more hops might introduce higher packet pro-
cessing and propagation delay as packets traverse more network devices. Besides, the queuing 
delay fluctuates significantly with the routes, leading to varying RTTs. 

For a shared medium, media access control (MAC) on the link layer addresses the shared-channel-
allocation problem. Additional latency arises from the design of MAC protocols. Static channel 
allocation, such as time division multiple access (TDMA), gives rise to predictable latency due to 
the fixed assignment of the shared medium. For TDMA, the sender waits for its assigned time slot, 
rendering the unused time slot idle and thus increasing the waiting time, especially when the chan-
nel load is low. As for dynamic allocation, the collision and buffering delay resulting from the 
contention channel cannot be ignored, especially when the channel load is high. Channel compe-
tition makes the transmission delay of a frame erratic, which is not suitable for real-time traffic. 

The queuing delay at each device contributes a large part to the end-to-end latency, which is caused 
by the contention of shared sources, such as output ports and processing units. The buffer is set to 
hold queued packets, preventing packet loss and handling network burst traffic, which incurs a 
queuing delay. Many factors affect the queuing delay, including routing decisions, congestion 
control, etc. For longer links, such as satellite links, propagation delay is nontrivial on the lower 
layers. 

NOVEL TECHNIQUES TO REDUCE LATENCY 
To achieve low network latency, we can consider the delay created at each layer of the TCP/IP 
network architecture. In this section, we discuss some research efforts dedicated to reducing the 
latency mentioned above. 

Reducing Application-Specific Latency 
First, we introduce two typical applications whose application layer latency we discussed earlier: 
web services and interactive live streaming. Then, we present the corresponding methods on the 
application layer for reducing the latency. 

For web services using HTTP, unnecessary handshakes incur latency during connection setup. 
Many procedures performed on the application layer improve the handshake delay by reducing the 
number of TCP connections. HTTP 1.1 adopts persistent connections to deal with multiple HTTP 
requests in one TCP connection.7 However, the support for concurrent connections brings latency 
and gives rise to mounting complexity of management. 
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Fortunately, the multiplexing adopted by HTTP 2.08 addresses this problem. Several requests or 
responses sent to the same receiver are multiplexed while being transferred. Labels are applied to 
distinguish between different streams and different packets. This eliminates the need for establish-
ing multiple TCP connections and contributes to the reduction of page-loading time. In fact, HTTP 
2.0 has received the attention of the IETF and was standardized by the HTTPBIS (Hypertext Trans-
fer Protocol) Working Group. 

For live streaming, smooth playout and low latency are conducive to a good user experience. To 
achieve continuous playout when the condition of the best-effort network varies, buffering on the 
client side is employed. However, an inevitable delay comes with the buffer. Measurements show 
that the buffering latency is the largest part of the live streaming delay.6 

To reduce buffering latency without suffering from stalls, the amount of prebuffered data and the 
adjustment of the playout rate are worthy of study. For example, adaptive media playout is an 
effective methodology that aims at playout rate adjustment and has proven highly successful in 
buffer latency reduction. Specifically, an attempt has been made to leverage historical buffer level 
variation information and estimate the buffer variation range, after which buffer size is adjusted 
accordingly.9 This method reduces the latency under good conditions, using a shallow buffer to 
guarantee no interruption. 

Optimizing the TCP Handshake and Alleviating HOL 
Blocking 
For a single TCP connection, the traditional three-way handshake adds latency to data transmis-
sion, especially for short flows. This latency can be mitigated by reducing the number of control 
interactions in a single TCP connection. TCP Fast Open (TFO) aims to start transmitting data 
while carrying on the handshake.10 It is achieved by using a cookie and sending data to the receiver 
before an acknowledgment arrives. If a TLS handshake is required to provide a secure connection, 
one to two more RTTs are introduced on top of conventional TCP. 

Quick UDP Internet Connections (QUIC)11 can achieve one RTT handshake for the first-time con-
nection by incorporating the transport and crypto handshake. For subsequent connections, clients 
send the cached cryptographic cookie, the encrypted payload, and other information to the server, 
which the server can utilize to authenticate clients and decrypt the payload data. As a result, a zero-
RTT handshake is attained. Internet statistics show that QUIC was supported by about 1.0 percent 
of all websites as of August 2018.12 

Another delay contributor on the transport layer is HOL blocking, which is caused by lost or out-
of-order packets in the sequential packet delivery. Methods that speed up the retransmission of 
lost packets help relieve HOL blocking. Keeping the sender aware of the packet loss in a timely 
manner, instead of waiting for the retransmission timeout, can accelerate the retransmission. In 
fast retransmit,13 three (or fewer in early retransmit14) duplicate ACKs indicate packet loss and 
trigger the retransmission. An explicit notification of packet loss can also notify the sender to 
retransmit with dispatch. The cutting-payload mechanism trims the packet, leaves the header trans-
ferred to the receiver, and sends negative acknowledgments to inform the sender of the packet 
loss.15 By decreasing the time to retransmit the lost packet, the waiting time of subsequent packets 
is reduced. 

Some new protocols also have countermeasures upon HOL blocking. For instance, QUIC deals 
with this problem by supporting multiple streams in one connection. To be more specific, one 
QUIC packet consists of several frames of a small number of streams. Thus, a lost packet only 
causes HOL blocking of the corresponding streams, rather than all streams. 

Also, in Multipath TCP, because the packets take different paths with different RTTs, they might 
arrive at the receiver out of order. To solve this problem, opportunistic retransmission has been 
proposed, in which the message causing the HOL blocking is re-sent on subflows that have avail-
able congestion windows.16 

Moreover, another method, Slide Together Multipath Scheduler, allows preallocating packets for 
the fast path and allows packets with a larger sequence number to travel on slow paths.17 In this 
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way, packets can arrive at the receiver in order without HOL blocking; more details can be seen 
in Figure 2. 

 

Figure 2. The Slide Together Multipath Scheduler (STMS) prevents HOL (head-of-line) blocking. If 
the fast path is not available when the sender starts sending data, the default Multipath TCP (MPTCP) 
scheduler will send packets with small numbers on the slow path, which causes HOL blocking. 
However, when STMS is adopted, the slow path always sends packets with sequence numbers larger 
than those of the fast path. 

Reducing Latency on the Lower Layers 
Routing is a fundamental functionality on the network layer that affects RTT by selecting paths. 
However, existing routing protocols were designed without considering latency. Methods based 
on traffic engineering can be used to reduce latency, but they are often limited by inadequate mod-
els. Queuing theory is a common way to model network queuing and assist traffic routing. None-
theless, it might not perform well because in most cases it is a queued network rather than a single 
queue that is dealt with. A model-free approach utilizes deep reinforcement learning, bypassing 
the problem of building an accurate mathematical model.18 Despite the potentially high perfor-
mance, it might face some challenges; e.g., it is hard to obtain the required real-time reward. 

Some companies, such as ViewQwest and Amazon, are also studying latency-based routing to 
reduce RTT and meet the requirement of delay-sensitive applications. For example, ViewQwest 
benefits from redundancy by monitoring traffic and probing all available paths to select the best 
route for low latency.19 

Frame aggregation is an effective enhancement to improve throughput and reduce medium access 
delay on the link layer. It reduces the transmission delay and buffering delay by abating the over-
head of the frame header and the number of contentions, respectively. However, a tradeoff exists 
between the time spent in computing aggregates and the time saved owing to aggregating frames. 
Operation with high efficiency might be complicated and consume much more time.20 In addition, 
a larger aggregated frame means a longer waiting time before channel access. Existing aggregation 
methods mostly aim at improving throughput and transmission efficiency. Reducing latency while 
optimizing the above two performance metrics is still an open issue. Frame size adaptation con-
sidering channel conditions might also be a choice. 

Reducing Queuing Delay 
Queuing delay is one of the most prominent factors that contribute to high end-to-end latency, 
especially for datacenters with small internal distances. A priority mechanism can reduce flow 
completion time for delay-sensitive flows.21 To prevent the blockage of delay-sensitive flows, their 
priority can be raised with the use of a priority queue scheduler. 

A well-designed congestion control algorithm can also help prevent queues from accumulating, 
thus directly reducing queuing delay. A new delay-based congestion control algorithm, Copa, has 
been proposed to achieve low queuing delay and high throughput.22 It sets an objective function 
with packet delay as a penalty, and the target sending rate is proportional to the reciprocal of the 
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queue delay. If the current rate exceeds the target rate, the sender reduces the congestion window, 
which prevents the accumulation of queues. 

Google Congestion Control,23 an architecture proposed for Web Real-Time Communication 
(WebRTC), has a delay-based controller to directly manage the rate of the sender. The (one way) 
queuing delay gradient (the derivative of the queuing delay) serves as the signal to minimize the 
queuing delay along the end-to-end path. The derivative can reflect the change of the buffer, which 
provides prescience of buffer size and can be leveraged to reduce latency. Kalman filtering is 
designed to estimate the queuing delay gradient, and an adaptive threshold of this gradient is set 
to control the rate of increase or decrease, which helps to minimize the buffer size and queuing 
delay. 

OPPORTUNITIES 
Novel applications and scenarios have sprung up that place high requirements regarding latency. 
In addition, emerging techniques, such as edge computing and data-driven methods, are being 
applied to reduce latency in many scenarios. 

New Applications and Scenarios 
An ocean of emerging applications that require ultralow latency have come into existence. One 
example is VR, which needs low motion-to-photon latency to create the sense of reality. For VR, 
latency consists of computation time and network transfer time, and the tradeoff between them is 
under research. 

For example, on the basis of the knowledge that VR content rendering can be divided into fore-
ground interactions and predictable background virtual environments, phone–server cooperative 
rendering has been proposed and proves promising.24 Foreground rendering is completed at the 
mobile local GPU. Background prerendering and prefetching are carried out on the server. Ren-
dering the interaction locally can provide a better interaction experience and avoid a long trans-
mission time in the network. 

Datacenters are a representative network scenario of low latency. Unlike traditional networks, in-
side datacenters, architecture and protocols can be designed and modified flexibly for high perfor-
mance. For instance, existing wireless datacenters face some challenges—e.g. dense interfaces and 
limited wireless links. A redesign of wireless datacenters using a multireflection ring topology has 
been proposed.25 Leveraging a flat reflector, the wireless signal can be reflected several times and 
transmitted to the target server without traversing multiple hops. This circumvents the queuing and 
processing delay in intermediate devices. 

Furthermore, remote direct memory access (RDMA) supports zero-copy technology and can com-
plete the data transmission without occupying the CPU, permitting low-latency networking. This 
eliminates the bottleneck of datacenter networks. 

Novel Methods to Reduce Latency 
There are many novel methods for reducing latency. Fog computing and edge computing put con-
tent or services near the user to help reduce physical distance and provide “local computation” 
capabilities. Delay-sensitive management systems of applications in response to changes of net-
work latency can facilitate the intelligent distribution of content to reduce latency. What’s more, 
using Internet of Things gateways or local processors as the main computing devices for applica-
tions avoids the time to pass all information back and forth from the central remote datacenter. 

With the development of machine-learning techniques, data-driven methods can facilitate net-
working optimization and control, including bitrate adaptation, congestion control, and traffic en-
gineering.26 They can also help achieve low latency. For example, deep learning can be leveraged 
to solve the topology adaptation problem in datacenter networks, with traffic demand as the input 
and a near-optimal topology as the output.27 With an expressive learning framework, this method 
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can flexibly support optimization over both flow-level or application-level objective functions, 
including the demand completion time or Hadoop job completion time. 

CONCLUSION 
Low-latency networking is worth studying and is of critical importance for emerging applications 
such as VR. This article has presented a short survey on the causes of latency at each layer of the 
TCP/IP network architecture and different techniques to achieve low latency. We hope that the 
analysis in this article helps drive the effort forward. 

In addition, low-latency networking can enable the development of new infrastructure and new 
methods. However, challenges and opportunities coexist. We thus encourage the continuous and 
in-depth study of this problem, which requires combining the competencies of academia and in-
dustry. 
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COLUMN: Backspace 

On Routing and 
Forwarding 

Everything on the Internet need not be connected.  

In the earliest days of Internet design, I was largely fixated on the idea that everything should be 
able to talk to everything else on the network. A recipient of an Internet packet could reject or 
ignore it but senders were free to send. As the Internet penetrated into the commercial private 
sector, enterprises looked for ways to isolate their computing equipment from the global network 
through the use of firewalls that were not part of the original design.  

In subsequent years, routers have become extremely elaborate systems and routing methods have 
become more complex. The Border Gateway Protocols grew more complex as routing choices 
collided with economic considerations (e.g. near-end vs. far-end hop off). Multiprotocol Label 
Switching (MPLS) was used to groom traffic onto alternative optical streams to manage channel 
occupancy. Virtual LANs were developed to group devices together in a common communica-
tion channel even when they were on distinct physical LANs. OpenFlow expanded the basis for 
routing and forwarding decisions from simple destination address lookup to use of any bits in a 
packet on which to base forwarding choices. It also demonstrated the feasibility of centralizing 
forwarding table production for systems of suitable scale. The core, inter-data-center network of 
Google adopted this practice to very good effect.  

It has finally dawned on me that not everything has to be connected to everything and that rout-
ing and forwarding can be deliberately constructed to confine connectivity to a desired cohort of 
devices. I have been so consumed with “everything has to be connected” that this recognition has 
been slow in coming. Duh. The forwarding tables in routers can be constructed in many ways 
and more than one forwarding table can readily be imagined. The implication is that one can use 
conventional routers or more recent Software Defined Networks (SDNs) to isolate groups of de-
vices from the rest of the Internet. Such an implementation strikes me as a different way to real-
ize the concept of Virtual Private Network without the encapsulation and potential hazards of 
conventional VPN implementation. The forwarding table defines the constituents of the virtual 
network. A flat table of specific 32 bit or 128 bit IP addresses could create an isolated group of 
devices able to communicate only with each other, for example. 

Interestingly, the redefinition of forwarding tables also leads to concepts such as Information 
Centric Networks or Content Centric Networks that route on content indicators rather than ad-
dresses. Moreover, one can extend this line of thinking in other ways. The existing Domain 
Name System (DNS), for example, maps domain names into IP addresses which are then routed 
by the common routing system(s) of the Internet. It is quite possible to imagine a different set of 
identifiers, other than domain names, that could be mapped into IP addresses. One example is the 
Digital Object Architecture developed by Robert Kahn at the Corporation for National Research 

Vinton G. Cerf 
Google 
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Initiatives (CNRI). Every digital object gets a unique digital identifier (handle) that can be 
looked up to find the location or locations at which the object may be found. David D. Clark’s 
forthcoming book, Designing an Internet (Information Policy), explores a variety of potential 
new designs for Internet-like functionality.  

As memory becomes less a barrier and backbone link capacities increase, more elaborate routing 
mechanisms may prove feasible. New SDN designs, with switches that are programmable, may 
provide a basis for more refined and sophisticated routing and forwarding mechanisms. In the 
coming era of the Internet of Things, the ability to isolate groups of devices for protective rea-
sons may prove to be an essential step towards improving the security of the Internet. Such ideas 
will place significant demand on configuration tools to cope with scale and the use of cryptog-
raphy to protect against the risks of misrouting.  

I am sure that there are among the readers of this column, many who are much more cognizant of 
advanced thinking about routing and forwarding, so I hope they will take time to draw attention 
to their ideas for future evolution of this all-important function of the Internet. 
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