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Abstract—Efforts to improve machine learning performance
begin with defining a valuable feature set. However, datasets
with copious amounts of attributes can have relevant infor-
mation that is obscured by its high dimensionality, which can
be caused by repetitive characteristics or irrelevant qualities.
Genetic algorithms provide improvements to feature sets through
dimensionality reduction and feature construction. Most genetic
algorithms follow the theoretical framework of evolutionary
theory where a population of features randomly evolves through
generations through a series of random operations such as
crossover and mutation. While successful, the randomness of
feature modification operations and derived constructed features
may yield offsprings that under-perform compared to their
ancestors, yet their properties are utilized in future generations.
We developed a new genetic algorithm called Selective Equation
Constructor (SEC) that evolves constructed features selectively
in order to limit the shortcomings of other genetic algorithms.
The algorithm leads to faster computation and better results
compared to similar algorithms. Analysis of the results indicates
increases in classification accuracy, decreased run time, and
reduction in attribute count.

Index Terms—genetic, programming, algorithm, equation, con-
structor

I. INTRODUCTION

It is quite difficult to look at a feature set and determine
which components will allow a machine learning task to
perform well. An answer to this solution is using techniques to
enhance a known feature set. Evolutionary algorithm methods
can improve classification accuracy through feature selection
or feature construction [1]. Feature construction, in particular,
is a technique that leads to dimensionality reduction by com-
bining several features into a single feature or series of fea-
tures. The term has been popularized over the past few decades
by many algorithms that are inspired from evolutionary theory
(e.g., [2], [3], [4], [5], [6], [7], [8]). Genetic algorithms
have demonstrated higher accuracy in classification as well as
continuous predicted variable problems in a variety of machine
learning problems. However, such techniques that follow a
random evolution paradigm can lead to the creation of some

unintelligible results if they are expansive but not accurate.
A general limitation of genetic algorithms are operations that
cause random modifications to “chromosomes” (i.e., feature
structure) that are not necessarily moving the evolutionary
process in the right direction. Consequently, many genetic
algorithms have to operate longer in order to allow for the
process of evolution to generate meaningful results.

Our proposed evolutionary algorithm intends to avoid super-
fluous feature development through critical analysis of newly
constructed features as it generates them. Higher classification
accuracy in shorter computational time is achieved by:

• Ensuring that constructed features are tested for quality.
We require that constructed features are “meaningful” to
the evolutionary process and learning algorithm, i.e., it
must be mathematical constructs that can be processed
and contribute positively to the evolutionary process.

• Allowing a user to supply the modeling and fitness
functions while preserving a rigorous cross-validation
procedure inherently in the algorithm’s structure.

• Adopting parameterization that allows for domain specific
information to inform the evolutionary process (e.g.,
weighted symbol evolution).

The algorithm is being developed for a release as an R pack-
age. The latest development version can be accessed at: https:
//gitlab.cs.wwu.edu/tsikerm/selective-equation-constructor.

The rest of the paper is organized as follows. In section II,
an overview of representative genetic algorithms is presented
along with a discussion on their limitations. The goal is to
frame this work in relation to the larger genetic algorithm
domain. This also aims to highlight some of the contributions
of our genetic algorithm. Section III is a comprehensive
description of our proposed algorithm. Section IV presents
the performance results for the proposed algorithm. Finally,
Section V introduces the implications of the proposed genetic
algorithm and proposes future research directions.978-1-5386-5150-6/18/$31.00 © 2018 IEEE



II. RELATED WORKS

The task of transforming feature sets for classification
problems can be organized into separate categories: feature
construction, selection, and reduction. Feature construction
aims to generate new high-level attributes from combinations
of original features in order to obtain improved outcomes for
a problem [9]. Feature selection attempts to select a smaller
subset from the original set of larger features [10]. While
both selection and construction are capable of reducing the
size of feature sets in classification problems they have a key
difference. With feature selection, original features may not
be descriptive enough to accomplish promising performance
when used for machine learning. With feature construction,
the features can be assembled in a manner that improves
classification accuracy [11]. Evolutionary algorithms aim to
reduce data dimensionality since having a high order feature
space can mislead a machine learning algorithm [12]. The
burden of examining the complete original set of features is
diminished by taking away redundancies in the feature space.
Two major approaches for this task are genetic programming
and genetic algorithms. There are several differences between
the two, one of which being the representation of the function
(feature) that is constructed. Given the broad literature for
these two approaches, we have identified three significant
topics on these methods: dimension reduction, decision tree
related approaches and grammar evolution. These are not
meant to be exhaustive but representative for the context of
this paper.

A. Dimension Reduction

Having a good feature space is important for achieving
high machine learning performance. Typically, when faced
with a complicated problem, good feature space is not al-
ways apparent. In some instances, the data may have high
dimensionality (i.e., thousands of attributes). In a study by
Tran, Xue, and Zhang [13], an embedded feature construction
approach is used to develop new high-level features. This
method improves from feature selection where the features can
only be chosen from the original set of features for classifica-
tion. In an embedded genetic programming (GP) for feature
construction, new high-level features are introduced along with
the original features, and a classifier. The methodology used
by Tran et al. implements a tree based representation with a
population (i.e., constructed features) where each individual is
a tree. The nodes for the tree are either random constants or
original feature values. With every individual, the algorithm
can generate a new value from the original features, thus
every individual is considered a constructed high-level feature.
Following each GP iteration, the best results are used to
generate unique feature subsets. The subsets are tested against
training results from several different classification algorithms
such as K-nearest Neighbor and Naive Bayes. The study found
that even though gene expression data has a large number
of features, only a small number of features are relevant to
resolving problems (e.g., accurate prediction).

B. Decision Tree Related

An early feature construction method, FRINGE [14], uti-
lized exhaustive methods on decision trees to generate all
possible boolean function combinations of a set of original fea-
tures. In an attempt to improve on this approach, Markovitch
and Rosenstein developeped FICUS [15]. This decision tree
feature construction algorithm utilizes user supplied informa-
tion on feature types, domain and range of basic features as
well as constructor functions. From these specifications the
feature space is only generated from legitimate constructed
features. However, one of the method’s drawbacks is that
feature interaction leads to a narrow search in the feature
space. Another limitation is that for any given problem the
decision of proper operators is frequently ambiguous therefore
there is a need for the user to supply an appropriate set of
constructor functions. A similar decision tree algorithm for
classification utilized the Wine1 dataset as a benchmark to
learn more about the effects of constructed features [9]. The
results indicated the importance of these constructed features
in relation to the success of the algorithm’s performance.

C. Grammar Evolution

A more complex genetic algorithm has also been tested for
feature selection and construction by Gavrilis et al. [16]. The
feature construction and selection in this algorithm is based
off a genetic programming method introduced by Krawiec
[17]. This algorithm aims to improve classification accuracy
via grammatical evolution. Grammatical evolution utilizes
an evolutionary algorithm and a context-free grammar to
produce a progression of terminal symbols [18]. Generally,
grammatical evolution methods are represented as integers
and each gene signifies a production rule from a given set
as specified in the grammar. During evolution, the algorithm
replaces all non-terminal symbols with selected production
rules and this process continues until the end of a chromo-
some. If no legitimate expression is composed, the process
is continued at the front of the chromosome, giving it a
wrapping effect. The method utilizes the following steps.
Source data are separated into two sets, one for training
and the other for testing. The genetic algorithm parameters
are defined. Applying this restriction reduces the formation
of large expressions. A grammar that defines all possible
algebraic expressions of the original feature set is created.
All parts of each chromosome within the genetic pool are
randomly assigned. Fitness is evaluated for each chromosome
based on an evaluation function. Then, genetic operators of
mutation and crossover are applied and a new generation of
chromosomes are produced. Within the crossover procedure,
chromosomes with the least fitness value are replaced. Finally
the algorithm is terminated if a chromosome classification
accuracy (fitness value) is greater than a predetermined value
or the maximum number of evolutionary generations has been
reached. Limitations of such methods often result from the
fixed chromosome, which provides an upper boundary on the

1Predicting wine cultivars source based on a series of wine attributes



number of features that can be included in the constructed
feature regardless of whether there are more features that
could be useful if included. Another common limitation is
that the use of operations such as crossover and mutations
substantially change the structure of an existing feature and
while the feature may remain in the population it subsequently
may be selected for future evolution.

III. SELECTIVE EQUATION CONSTRUCTOR ALGORITHM

Our Selective Equation Constructor (SEC) algorithm con-
sists of several steps that work together in order to ensure code
modularity as well as opportunities for optimization, whether
for computational performance or accuracy. Several parame-
ters are also introduced in order to better adapt the algorithm
to various domains of application. Algorithm components
are shown on figure 1. In order for the genetic algorithm
to be scalable, the Core Evolutionary Function (CEF) can
be executed in parallel. The Evolve Function generates new
constructed features that are then evaluated and passed through
an x-times (not shown in the figure) n-fold cross-validation
test. The Model Function (MF) is the function that a user
supplies to SEC. MF is expected to utilize a particular machine
learning algorithm and to output a numeric result bounded
between 0 and 1 (e.g., classification error, f-measure). Results
are aggregated, evaluated and stored in a commonly shared
storage between CEF processes. The process then repeats until
certain conditions are met (described in section III-B). The
common shared storage needs to be ACID (atomicity, consis-
tency, isolation and durability) compliant. This helps ensure
that constructed features are tested only once and that each
process “evolves” a different part of the tree of constructed
features. It also helps outsource some of the computational
cost outside of the main process (e.g., storage could be running
on a secondary computer or cluster). Further, any of the
components can be replaced with additional components given
the modular state of the algorithm (e.g., replacing the Evolve
function with a grammar-based evolve function).

A. Feature Evolve Function

Our feature evolution function utilizes string processing and
a rule set to evolve features. Symbols have properties that are
associated with them that form the complete rule set. The main
two types of function symbols are those that are added to a
formula and expand it (e.g., addition or subtraction) and those
that are applied to a formula or parts of it (e.g., logarithm or
absolute).

The process works as follows:
• Apply weighted selection from a series of symbols (e.g.,

+,−, ∗ etc.). Weights are either applied uniformly or
updated by the main algorithm (algorithm 1).

• If symbols require a feature to be selected, e.g., +.
– Select a feature or random number from a specific

range.
– If the symbol is allowed to enclose items in paren-

theses, decide at random on whether parentheses will
be applied.

Fig. 1. Main steps of Selective Equation Constructor (SEC) algorithm.

∗ true, decide at random whether the formula will
be encircled in parentheses as a whole or partially.
· true, encircle the whole formula in parentheses

before adding a new symbol, e.g., a∗b+c =⇒
(a ∗ b+ c) + d.
· false, find symbols that exist in the formula

and are good candidates for placing paren-
theses after them. If they exist, pick one of
them at random then apply parentheses, e.g.,
a ∗ b + c =⇒ a ∗ (b + c) + d, otherwise, just
add the new symbol without parentheses, e.g.,
a ∗ b+ c =⇒ a ∗ b+ c+ d.

∗ false, add symbol without parentheses, e.g., a∗b+
c =⇒ a ∗ b+ c+ d.

• If the symbol does not require a feature to be selected,
e.g., log.

– Decide at random whether the symbol will apply
parentheses to the formula as a whole or partially
∗ true, apply symbol to the whole formula, e.g., a∗

b+ c =⇒ log(a ∗ b+ c).
∗ false, find symbols that exist in the formula and

are good candidates for placing parentheses after
them. If they exist, pick one at random and apply
the symbol with parentheses, e.g., a∗b+c =⇒ a∗
log(b+ c), otherwise, enclose the whole formula,
e.g., a ∗ b+ c =⇒ log(a ∗ b+ c).

The main premise behind our feature evolution function is
that it can gradually expand an existing feature by adding more
parts to it. In other words, constructed features keep being
expanded and never contracted. This is a major departure from
chromosome-based genetic algorithms that often have fixed



size apriori. However, in our algorithm, we want to expand
constructed features as long as we keep yielding statistically
positive improvements from their “geneological” tree.

B. Core Evolutionary Function

The core process of the algorithm that can run in parallel is
presented in algorithm 1. Parameter id identifies each unique
process and helps set a different seed for the programming
language’s pseudorandom generator. Communication between
multiple CEF processes occurs through a common shared stor-
age (e.g., database) and hence a series of storage parameters
are passed through strg params. In lines 2 to 5, the algorithm
initializes variables, connects to a common storage and selects
a parent constructed feature from db.candidates that may
already exist in the storage (e.g., if another CEF process has
already stored results or the algorithm resumes from a previous
result set). db for presentation purposes represents a tuple of
tuples and access to subtuples (that may contain subsequent
tuples) is highlighted using the tuple.subtuple notation. When
db.all (that contains all tested formulas) is initialized a default
feature is constructed as y = 1, which becomes the initial root
node (parent) for feature evolution. This can be seen on fig.
2. The function LockPickRelease locks the shared storage (so
that other processes have to be placed in a queue to access it),
picks a new parent node from db.candidates and if another
parent is provided as a parameter, it releases that record in
db.candidates so that other CEF processes can reserve it.
The selection of a new parent is performed using weighted
sampling where the corresponding weights are based on the
results (5th item) in the 5-tuple stored in db.candidates.
The weighted selection of a parent helps ensure that while
all candidate constructed features (CF s) could potentially
be selected to be evolved, the more successful ones have a
higher probability. This results in the algorithm reaching better
results faster through selecting more successful CF s but still
maintaining an escape route from any local minima that may
exist in the dataset.

CEF’s main loop starts at line 8. The loop persists until the
number of uniquely tested constructed features reaches the
generations parameter. The name of the parameter loosely
relates to how it is used in other genetic algorithms, however,
as per our definition it does not imply geneological depth but
a combination of breadth and depth of total tested constructed
features. tolerance is the control variable that limits the
depth for repetitive unsuccessful constructed features. The
loop attempts to evolve the existing parent.CF to a new
CF based on the Evolve function described in section III-A.
After a new CF is generated it is calculated based on the
source dataset (not shown in the algorithm to reduce clutter)
and is further sanitized (function CalcSan). By sanitation we
mean ensuring that the results contained in dataCF can
be used in further calculations. For our implementation we
decided to use the following: Not a Number (NaN) = 0,
Not Available (NA) = dataCF , −∞ = min(dataCF ), and,
+∞ = max(dataCF ). Such abnormalities may occur due
to problematic features (division by 0) or features that lead

Algorithm 1 SEC’s Core Evolutionary Function
1: procedure CEF(id, strg params, generations,

tolerance, kill limit, modfun, bthres, dthres,
cand limit)

2: seed← id
3: tolerance count← 0
4: Connect to db using strg params
5: parent←LockPickRelease()
6: oldresults← parent.results
7: weights← uniform distribution
8: while len(db.all) ≤ generations do
9: if tolerance count 6= tolerance then

10: CF ← Evolve(parent.CF , weights)
11: dataCF ← CalcSan(new CF )
12: attempts← 0
13: kill counter = 0
14: while CF /∈ db or SD(dataCF ) = 0 or

SD(dataCF ) = parent.SD(dataCF ) do
15: CF ← Evolve(parent CF)
16: dataCF ← CalcSan(new CF , weights)
17: attempts← attempts+ 1
18: if attempts = 10 then
19: parent←LockPickRelease(parent)
20: end if
21: if kill counter = kill limit then
22: Release(parent)
23: Exit
24: end if
25: end while
26: results← Crossvalidate(modfun, dataCF )
27: bf ← CalculateBF(results, oldresults)
28: diff ← results− oldresults
29: Lock db
30: Store CF, results, bf, diff, results in db.all
31: Release(parent)
32: if diff ≥ dthres and bf ≥ bthres then
33: Store CF, results, bf, diff, results in

db.candidates
34: Reserve CF node in db.candidates
35: Retain highest cand limit in

db.candidates
36: tolerance count = 0
37: weights ← update using CF and

store/update db.weights
38: oldresults← results
39: else
40: tolerance count← tolerance count+ 1
41: end if
42: parent← latest tuple stored in db.all
43: Unlock db
44: else
45: tolerance count = 0
46: parent←LockPickRelease(parent)
47: oldresults← parent.results
48: end if
49: end while
50: end procedure



to extremely large numbers to be held in memory (leading to
infinity in some programming languages).

After sanitation is applied, the new CF is checked for
“meaningfulness”. In essence the feature needs to be calculable
as well as have a standard deviation that is both non-zero and
different from the parent’s standard deviation. If any of these
fail, CF is discarded and a new CF is generated from the
parent.CF . If several attempts (10 in our example) fail to
yield a “meaningful” result, a new parent is selected (line
19) and the process repeats. kill limit serves as a failsafe
parameter that will ensure that CEF will terminate if it is
unable to generate a unique “meaningful” constructed feature
that does not exist in the storage after several attempts (lines
14 to 25). This often occurs when a small number of attributes
exist in a dataset.

The testing sequence (lines 26 to 31) applies an x-times n-
fold cross-validation on the dataset using the model function
modfun and dataCF (derived from CF ) as the sole predictor
feature. modfun is provided by the user in order to ensure
that domain knowledge is incorporated in the process. For
example, for low-dimensional noisy datasets one may opt to
use a random forest algorithm whereas for high-dimensional
datasets one may utilize a neural network. The output of
modfun is a performance metric (e.g., classification error for
multivariate problems or f-measure for continuous predicted
variables). results is an array that contains x ∗ n results as
they are derived from modfun.

The newly tested CF along with all results are then
stored in db.all and the current parent is “released” so that
other processes may select it. To check whether the new
CF is a substantial improvement over the previous one, we
utilize two metrics: Bayes Factor (BF) and mean difference
between current results and oldresults. The mean difference
demonstrates the increase (if any) in predictive accuracy,
while BF shows how significant the result is relative to our
x ∗ n sample size of results. The main difference between
the typical statistical significance value (e.g., p in frequentist
t.test) and BF, is that BF represents the probability odds of
H1 against H0, with H1 being the hypothesis supporting that
the difference is significant between two samples and H0

supporting the opposite [19]. This is often formally described
as BF10 = P (H1)

P (H0)
. BF has been shown to be a superior

function for determining probability odds [20], [21]. The two
parameters that set the thresholds of what is deemed as an
acceptable result are bthres and dthres.

If CF passes these fitness checks (line 32), then it is stored
in the db.candidates array of tuples and it is marked as
“in use” so that other processes will not select it. Further,
the tolerance count is set to 0 since a “good” CF has
been found, and, db.candidates is adjusted to cand limit
discarding any older CF with lower performance. Finally,
db.weights for symbols are updated based on the symbols
that are found in the successful CF . oldresults is updated
based on the result array of the newly successful CF . On
the other hand, if fitness checks do not succeed (line 39)
then the tolerance count increments. Finally, the new CF

record in db.all is set as the parent and the db is unlocked so
that other processes can use it. Notice that while a new CF
always evolves from its immediate parent, fitness comparisons
are made with the previous successful ancestor’s oldresults,
which is not necessarily the parent (observe lines 6, 27,
28, 38, 47). This approach helps ensure that rudimentary
small improvements between consecutive “failed” CF s are
not accounted as successes.

Some further parameterization has been removed from the
algorithm presented in order to ensure clarity. For example,
if line 37 is removed, then the symbol selection used in
the Evolve function is applied uniformly. In the presented
form, weights serves as a domain information factor that is
incorporated in the genetic algorithm and aims to improve
how constructed features evolve. This is also highlighted as
an important problem that needs to be addressed by genetic
algorithms [13] and hence why we have provided that option.

The results produced by one or more CEF processes as
stored in db.all and db.candidates can be visualized as a
tree. Figure 2 shows two fictitious evolutionary trees with
tolerance set to 1 and 3 respectively. When tolerance is set
to 1, CEF expects that every single step of evolution for CF
will yield a statistically significant and positive result passing
the necessary thresholds. If a step fails, then the algorithm
will revisit a previous successful CF from db.candidates and
attempt to evolve a unique constructed feature once again.
On the other hand, when tolerance is set to 3, repeated
constructed features that failed to pass the test are “tolerated”
as long as the path does not exceed 3 failed attempts. In the
event that a successful CF is produced before then, then the
tolerance count resets and the algorithm can produce another
3 failed attempts until it needs to pick another parent again.
While the process ensures that the same constructed feature
will never have to be tested more than once, the algorithm is
not considered exhaustive since it cannot start or expand an
evolving step from any of the failed CF nodes. The process
of jumping between different parents every y failed attempts
helps the algorithm escape any local minima that may exist in
relation to maximizing accuracy.

Fig. 2. Example evolutionary trees generated by SEC based on tolerance 1 and
3 respectively. Successful nodes that become candidates for future evolutions
are depicted by solid circles whereas nodes that fail to pass fitness tests are
shown as dashed line circles.



IV. RESULTS

A. Comparison With Other Genetic Algorithms

We evaluated our genetic algorithm based on several
datasets that have already been tested by other related works
that we covered in section II. The datasets that we tested
were the following: Wine2, Breast Cancer Wisconsin (Diag-
nostic) Data (WDBC)3, Prostate Tumor4, Pima Indians Dia-
betes dataset5, Liver Disorders dataset6, Diffuse large b-cell
lymphomas (DLBCL) and follicular lymphomas7, Ionosphere
dataset8, and Glass Identification dataset9.

The dataset selection was made so that we can test the algo-
rithm’s performance in a diverse set of classification problems.
These problems vary on the levels of classification (binary
or multivariate), volume of attributes (also often described as
features) and amount of instances (number of rows). Details
about the datasets are shown on Table I. DLBCL and Prostate
are considered high dimensional classification problems with
few observations whereas the rest of the datasets are binary
and multivariate classification datasets containing a more rea-
sonable amount of observations. These datasets have also been
used in past genetic algorithm studies and therefore serve as
good evaluation data points for the performance of our genetic
algorithm.

TABLE I
DATASET CHARACTERISTICS

Dataset Attributes Instances Classes
Wine 13 178 3

DLBCL 5469 77 2
Glass 10 214 6

Ionosphere 35 351 2
Liver 7 345 2
Pima 9 768 2

Prostate 10510 102 2
WDBC 32 569 2

We utilized the following two studies as a comparison for
the results of our genetic algorithm: [16] and [13]. Both were
described in section II and involve genetic algorithms that are
comparable and aim to achieve increased performance and
dimensionality reduction by means of feature construction. As
such, results that we presented for our algorithm in subsequent
tables also contain comparable results from these two studies.
For performance comparison, we have restricted our testing
settings to the same settings utilized by each of the comparable
studies. A summary of parameters is shown on table II. Most
genetic algorithms utilize parameters that we have purposeful
omitted from our SEC algorithm. For example there is no

2https://archive.ics.uci.edu/ml/datasets/wine
3https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+

(Diagnostic)
4http://www.gems-system.org/
5https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes
6https://archive.ics.uci.edu/ml/datasets/liver+disorders
7http://www.gems-system.org/
8https://archive.ics.uci.edu/ml/datasets/ionosphere
9https://archive.ics.uci.edu/ml/datasets/glass+identification

use of a tournament size, random selection of individuals or
crossover operations. Additionally, the mutation operation that
is the closest operation from a genetic algorithm that can be
found on our algorithm does not utilize a random selection
of a feature that is then randomly mutated. Instead, we select
based on weighted probability of a successful CF (compared
to its last successful ancestor) and then evolve it by means
of expansion such that the number of symbols in a parent
formula are always less than the symbols found on the new
child formula.

These differences between our approach and other genetic
algorithms resulted in the need to adjust our parameters so
that our results can be realistically comparable with other
studies. Henceforth, when we estimated our parameter values
we approximated the relative amount of unique formulas that
were tested by the other two studies. For example, in [16],
a population of 500 that is to be evolved 200 times with a
mutation rate of 5% will theoretically result in 5,000 unique
formulas. That does not take into account the tournament
selection for crossover operations, which would increase the
amount of theoretically unique formulas that could be tested.
Similarly, in [13], a population of 15,000 that is to be evolved
50 times with a mutation rate of 20% can theoretically result in
150,000 unique formulas. This does not account for crossover
operations that may also happen on the population from
generation to generation. In order to produce a conservative
estimate that is still comparable to these studies, we decided
that our algorithm will generate and test a total of 5,000
unique formulas. That became its upper limit (generations
parameter).

TABLE II
GENETIC ALGORITHM PARAMETERS AS WELL AS PARAMETERS FROM

COMPARABLE PAPERS

Parameter Parameter Value
SEC GP-Grammar[16] GP-Tree[13]

Generations
Varied until

5000 mutated
formulas

200 50

Population Init. at 1,
max. 1000 500 features ∗ β

Mutation Rate Weighted based
on performance 0.05 0.2

Selection Rate N/A 0.05 Weighted based
on performance

Tournam. Size N/A 10 7

Function Set
+,-,*,/,xy ,√

log, abs, exp
+,-,*,/,xy

sin, cos, log, exp
+,-,*,%√, max, if

β = {3, 2, or1} for features 5,000, 5,000-20,000 and larger than 20,000.

We utilized K-Nearest Neighbor (KNN) [22] as our bench-
mark function for evaluating the predictive potential of each
constructed feature. It is a non-parametric method that can
be applied for classification as well as regression problems.
KNN is lazy learning in the sense that the generalization
of the training data is made when the system is queried.
For numeric (continuous) predictor variables, KNN utilizes
Euclidean distance to identify the K nearest numbers, where



K ∈ Z+. For classification problems (the datasets that are
included in this study), the majority vote of K neighbors to
an object is utilized. Both comparative studies have utilized
KNN among other algorithms and KNN yielded the highest
performance accuracy. The K selection was adjusted to reflect
the selection made by each study for a corresponding dataset.
In addition, the algorithm is computationally cheaper than
other comparable algorithms (e.g., C4.5 [23]). KNN is also
a problematic algorithm to use for high dimensional problems
[24], which in turn can better demonstrate the benefits of di-
mensionality reduction that is the result of feature construction
by SEC.

The fitness function that we utilized to evaluate performance
was classification error, E = f

N , where f is the number of
falsely classified cases (false negatives) and N is the total
sample size. In practice, since modfun is passed through an n-
fold cross-validation via CEF, the classification error internally
becomes E = f

Nn . In other words, the classification error of
just one fold, which is our testing fold. Since, higher results
for performance metric are considered positive (based on how
CEF is constructed), we utilized the classification accuracy to
measure the success of each formula, E′ = 1−E. We utilized
3-time 10-fold cross-validation procedure for all tests in order
to avoid overfitting and to better estimate the accuracy of
predictions. The procedure is built into SEC and other genetic
algorithm studies have widely implemented an n-fold cross-
validation procedure as well.

Results for all datasets that were utilized for this study
along with the respective parameters used for our algorithm are
displayed on table III. We experimented with several tolerance
values and found that the range 2 and 3 performed well
for most datasets (although longer runs with higher tolerance
values yielded higher accuracy). Weighted symbol evolution
had a varied effect on accuracy. This is likely due to some
of the structures in the datasets “favoring” some mathematical
functions than others. In other words, while the algorithm has
no prior domain knowledge for a dataset, repeated successes
and failures can inform some of the evolution through the
weighted symbol selection in the Evolve function. Further
parameters that are not displayed in the table were the Bayes
Factor threshold (bthres) that was set to 10 as well as the nec-
essary difference for an evolution to be considered substantial
to be anything larger than 0 (dthres). Bayes factors above 10
are generally considered to be strong evidence in support that
a difference between two distributions is significant [25].

Results were measured against the aforementioned compa-
rable studies and are shown on tables IV and V. We report
for SEC the mean classification accuracy from the 3-time 10-
fold cross-validation. Overall, our algorithm achieved higher
performance when testing an equal or less amount of unique
formulas than the other two approaches. In other words, it
yielded better results faster.

B. SEC Parameters and Long Term Evolution

There are several parameters for the SEC algorithm that
can influence outcomes. Since the algorithm is not exhaustive

TABLE III
KNN RESULTS FOR DATASETS SEC WAS APPLIED ON

Dataset SEC-KNN
Parameters

Best CF
Mean Class.

Accuracy

All Dataset
Features Mean
Class. Accuracy

DLBCL Tol:2, WSE:T, K:1 94.3% 87.1%
Prostate Tol:2, WSE:T, K:1 92.3% 79.8%

Wine Tol.:2, WSE:F, K:10 96.8% 72.1%
Glass Tol:3, WSE:F, K:10 72.2% 66.2%

Ionosphere Tol:3, WSE:T, K:10 91.9% 83%
Liver Tol:3, WSE:T, K:10 73.2% 68.7%
Pima Tol:3, WSE:F, K:10 76.8% 73.5%

WDBC Tol:3, WSE:T, K:10 97.5% 93.1%
Note: WSE: Weighted Symbol Evolution, Tol.: Tolerance,

K: KNN k value, CF: Constructed Feature.

TABLE IV
RESULTS FOR HIGH DIMENSIONAL DATASETS

Dataset Classification Error
SEC GP-Tree[13]

DLBCL 94.3% 86.65%
Prostate 92.3% 83.72%

in its current implementation, identifying the ideal parameters
can help discover the best possible constructed feature in the
shortest amount of time. The parameters that hold the most
weight in SEC’s evolutionary process are: tolerance, weighted
symbol evolution and generations.

Tolerance can allow for larger more complex constructed
features that may however not yield positive outcomes. There-
fore, the higher the tolerance, the more time the algorithm has
to explore paths and as such other paths may be deprived
of that opportunity. In general, a high tolerance needs to be
accommodated by a high number of generations (the total
amount of unique formulas that the algorithm can evaluate
before it terminates). For demonstration purposes, we selected
the WDBC dataset that sits in the middle range between
number of attributes and instances from our tested datasets.
We tested a range of different tolerance levels between 1 to 5.

In addition to the tolerance range that we tested, we also
applied these settings with weighted symbol evolution active
as well as inactive. Although, weight symbol evolution can be
domain specific and not every dataset may positively respond
to such a parameter, we believe there is merit in indicating
these results as it is part of future exploratory work for our

TABLE V
RESULTS FOR LOW DIMENSIONAL DATASETS.

Dataset Classification Error
SEC GP-Grammar[16]

Wine 96.8% 94.44%
Glass 72.8% 71.03%
Liver 73.2% 69.94%

Ionosphere 91.9% 90.34%
Pima 77.4% 76.82%

WDBC 97.5% 96.14%



algorithm. Results of the best calculated constructed feature
for each experimental set of parameters are shown on table
VI.

TABLE VI
RESULTS ON EXPERIMENTS FOR WDBC DATASET WITH VARIOUS

PARAMETERS FOR 5,000 GENERATIONS, KNN=10 AND 3-TIME 10-FOLD
CROSS-VALIDATION.

Tolerance Weighted Symbol Evolution
Active Inactive

1 97.2% 97.1%
2 96.1% 96.1%
3 96.4% 95.8%
4 96.1% 97.1%
5 96.8% 97.4%

Overall, most of these parameters have a minor influence on
the output. Noticeably, even when tolerance is set to 5, results
are still positive even though more failed constructed features
are bound to exist. Fig. 3 shows the constructed feature
evolutionary tree. Noticeably, good constructed features (large
circles) can be found even after several failed constructed
features.

Fig. 3. Constructed feature evolutionary tree for WDBC dataset using
5,000 generations, KNN=10, 3-time 10-fold cross-validation and tolerance=5.
Each node (circle) represents a feature. Larger nodes represent successful
constructed features that are a statistical improvement over their previous
successful predecessor in their tree branch. The longer the graph distance
from the root node (found at the bottom of the graph), the larger the features
are.

The overall evolutionary trend for long runs will initially
resolve in a positive performance trend that is statistically
significant (e.g., using linear regression) but will eventually
plateau. Fig. 4 shows the overall trend for 100,000 generation
execution for the WDBC dataset. Users that wish to obtain
the peak accuracy through a genetic algorithm’s execution can
utilize a metric that identifies the plateau (e.g., the point where
the coefficient in a linear regression will become 0 or the
point where the curve flattens). The best constructed featured

occurred at the 92,999th attempt and had a mean accuracy of
98.37% with a standard deviation of 0.012 and its structure is:

(1 ∗ c1 − log(t1)− a3) ∗ s3 ∗
√
t2 − C1 + t1 +

s3
C2

t2
+C2

3−a2
(1)

where c is concavity, t is texture, a is area, s is smoothness,
C is compactness, and indexes correspond to measurements
as they are derived from three different cell nuclei that were
sampled in the WDBC dataset. The dataset contains a total of
ten different measurements for each of the three nuclei. One
can observe that the most successful dimensionality reduction
via a genetic algorithm utilized only five. While many of the
constructed features produced by genetic algorithms may not
be theoretically informative, their visualization may inform a
researcher to establish a new research direction and as such
there is merit in observing the complexity of such constructed
features.

Fig. 4. Constructed feature evolutionary progression for WDBC dataset
using 100,000 generations, KNN=10, 3-time 10-fold cross-validation and
tolerance=5. The Y axis represents feature accuracy performance while the X
axis represents the auto-increment numeric identifier for each feature. Features
with higher numeric identifiers are not necessarily in deeper branches of the
tree. Linear and locally weighted scatterplot smoothing (LOESS) lines are
plotted on the graph. Noticeable increase in performance over time as well
as a gradual plateau in higher x-values (generations)

C. Performance
The algorithm is constructed in such a way that it can run in

parallel which leverages multiple cores yielding faster results
at the expense of the process becoming non-deterministic.
Compared to other genetic algorithms, SEC will not test
constructed features that are not “meaningful” and as such it
utilized CPU time more efficiently. The most expensive aspect
of the genetic algorithm is the cross-validation procedure as
well as the machine learning algorithm that is utilized by
the user provided model function (modfun). As such, it is
advisable to benchmark the model function before passing it
to SEC.

Our 3-time 10 fold cross-validation tests for KNN=10, 5,000
generations and 16 cores for the WDBC dataset (table VI)



resulted in a CPU time with a mean of 1,575 and a standard
deviation of 335. Notably, lower tolerance values resulted in
higher CPU time since re-selection of a new parent node to
be evolved happened more often. The actual mean time was
6.98 minutes with a standard deviation of 1.98. Based on
related literature the results are comparable with other genetic
algorithms except those that do not utilize cross-validation as
the main evaluation procedure (e.g., information gain ratio
[26]).

V. FUTURE WORK

The major bottleneck can be found in the ACID com-
pliant data storage that is used for information sharing for
constructed features between different CEF (algorithm 1)
processes that run in parallel. In our experiments, we utilized
a SQLite database, which resulted in an upper limit in the
number of processes that could connect and write to it.
Furthermore, writing to disk is a more expensive operation.
The effect is not so apparent for model functions that have
slower machine learning algorithms (e.g., random forests) but
given the lazy learning nature of KNN, even a 10-time 10-fold
cross-validation was executed fast enough to create queues
between the different CEF processes attempting to write to
SQLite. Experimenting with different shared storages is bound
to yield faster results. Further, larger datasets need to be
utilized in order to evaluate the how the algorithm scales along
with subsequently different machine learning algorithms.

Our algorithm was tested only for classification problems,
however, as presented, the algorithm can be directly applied
for continuous variable prediction problems (e.g., temperature
prediction for climatic models). Future work, needs to evaluate
the performance of this method over such prediction problems.

There is also a need to evaluate the effect of alternative
evolve functions for feature construction. While for our pur-
poses, an open-ended length for our features allowed the algo-
rithm to keep developing more complex structures, alternative
evolve functions such as grammar-based or tree-based may
also result in positive results. Continued exploration should
also address more complex mathematical symbols as well as
how they can be efficiently solved (e.g. integrals).

Another aspect that needs to be evaluated is whether failed
branches should also be given the opportunity to be re-
explored by generating secondary branches in the tree of con-
structed features. The avoidance of exploring such branches
could generate non-optimal solutions and trap the process in
local minima. Additionally, weighted symbol evolution also
forces the evolutionary process to operate on non-random
operators, which may also lead to local minima. Finally,
weighted symbol evolution as a weighted sampling function
does not leverage the potential of machine learning algorithms
that can be applied to further optimize the problem. As such,
future work should evaluate symbol selection using more
complex supervised learning algorithms such as decision trees
or even neural networks.

VI. CONCLUSION

The SEC algorithm improves evolutionary algorithm ef-
forts by integrating opportunity for performance enhancement.
An analysis of similar methods shows how the algorithm
optimizes its resources by avoiding weaknesses in potential
constructed features. The selective evolution approach en-
sures that results which lack quality are disregarded, pushing
the outcome towards results that yield higher classification
accuracy while doing so at a faster rate than comparable
studies. As such, SEC offers an alternative genetic algorithm
that aims to resolve some of the issues presented in other
genetic algorithms. We hold that as problems in every domain
become more high dimensional, the need for advancing genetic
algorithms becomes even more important and this study aims
to produce a step forward in this direction.
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