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Abstract—This Full Research Paper investigated the correla-
tions of automated formative feedback and student knowledge
transfer in an advanced-level network course. A microservice of
automated formative feedback was designed and implemented.
The automated feedback was set up to address correctness and
coding style along a series of milestones in finishing each of
the assigned programming projects. 36 students participated in
this study. Different from the concerns of prior studies that
automated formative feedback may encourage trial & error and
harm learning, this study identified a link between the automated
formative feedback and student knowledge transfer. The results
of this study confirmed positive findings from other fields on
formative feedback, and call for more research on formative
feedback in computing education.

Index Terms—automated formative feedback, computing edu-
cation, programming assignments, knowledge transfer

I. INTRODUCTION

Programming courses are typically characterized by heavy
code-writing assignments and large student enrollments. Pro-
gramming assignments are notoriously difficult to assess in a
timely and effective manner [1], [2]. Some programs which
pass certain test cases may fail others, while some may lack
comments and are difficult to read. Therefore, one of the
urgent challenges facing computer science (CS) educators was
to automate the grading process [3]. As a complete program
is being assessed, feedback can be conveniently provided
along with the given grade. As a result, automated grading of
programming assignments was studied extensively in the past
two decades, and feedback provided along the assessment was
typically studied as a subprogram of automated assessment [2],
[4], [5].

From the perspective of constructivism, feedback can be
either formative or summative [6], [7]. Summative feedback
refers to the feedback provided along the assessment results to
students and it is typically considered final. In other words, a
student has no opportunity to correct their grade. In contrast,
formative feedback is provided during the learning process
instead of when student performance is being assessed [8].
Formative feedback can help students identify their strengths
and weaknesses and target areas that need further work. Prior
studies in the fields such as biology, physics, and mathematics
found formative feedback tends to be utilized by students more
frequently than summative feedback [9]–[11]. In addition,

formative feedback was found more effective in improving
student learning efficacy and academic performance [12].
However, formative feedback was much less studied in the
context of computing education.

To fill this gap, this study investigated the effectiveness
of automated formative feedback on CS students’ knowl-
edge transfer. The results of this study provide empirical
evidence on the efficacy of automated formative feedback on
CS students in programming courses, and contribute to the
understanding of effective learning & teaching approaches in
computing education.

II. RELATED WORKS

A. Constructivism and Feedback

Constructivism, as a learning theory, views learning as a
process of constructing knowledge based on prior knowledge
and experience. Learning occurs when students engage with
concrete examples, process information, and decontextualize
heuristics. This indicates that feedback is effective only when
learners act on the information to improve subsequent work
[13], [14]. As the result, if students are dissatisfied with
assessment results, they are less likely to act on the summative
feedback, and thereby less likely to learn.

Empirical studies consistently support the above feedback
hypothesis deduced from Constructivism. Formative feedback
has constantly been found more effective than summative
feedback in terms of addressing knowledge gap and improving
student performance [15], [16]. On one hand, summative
feedback often functions mainly as a justification of the
assessment results and thereby limits its developmental effect
[17]. Students are aware of the distinctions between summative
and formative feedback, and they tend to disregard the grade-
justifying feedback [8], [18]. On the other hand, formative
feedback can provide benefits on both cognitive and metacog-
nitive levels to students. In addition to informing students of
the faulty interpretation or knowledge gap, formative feedback
can help students self-regulate their learning and increase their
confidence [19], [20]. Although some studies investigated the
possibility of making summative feedback effective, most of
them acknowledged its difficulties in practice [21].

Despite of the abundant evidence on the benefits of for-
mative feedback [9]–[11], [22], it was rarely studied in the
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context of computing education. This phenomenon has been
observed by both Ala-Mutka [3] and Keuning et al [15] in
their survey studies on automated testing and feedback tools.
On one hand, many developed feedback tools in computing
education tended to put limits on the number of feedback
seeking attempts [3]. On the other hand, many developed
tools were no longer accessible by the time when their related
papers were published. Such papers typically focused on the
tool development, but did not touch on the aspect of feedback
delivery (summative vs. formative) [3], [15].

B. Automated Feedback

What sets programming courses apart from many other
courses is the difficulty of grading assignments. First, evaluat-
ing a program requires running it against multiple test cases,
and programs that work on certain test cases may fail on
others [1]. Second, multiple approaches of problem solving are
usually viable for the same problem. It is difficult for graders
to resort to one ”model answer” when grading programs using
different approaches [1], [23]. Third, even the same approach
is used, two programs may still have vastly different repre-
sentations depending of individual coding habits and styles.
Individual students are likely to use different variable names,
comment on different sections, and factorize different pieces
of code as functions. It is time-consuming to read code with
different structures and styles. Considering the typically large
enrollment sizes of programming courses, it is extremely time-
consuming to assess programming assignments systematically
and efficiently. Therefore, how to automate the assessment
of programming assignments emerged as one of the oldest
problem to tackle in the community of computing education.
As a program is being assessed, summative feedback can be
conveniently provided along with the given grades. As a result,
feedback was initially studied as a subprogram of automated
assessment.

Early studies between 2000 and 2010 on this topic tended
to focus on system development and error message design
[16], [18], [24]. Most systems developed in this period of
time require instructors to provide representative test cases and
manually tune feedback to work effectively. Additionally, early
studies had great concerns over whether students would abuse
feedback, so their systems typically (1) expected students
to submit a complete version of the program on their first
submission, (2) put limits on number of submissions, and
(3) put limits on the amount of provided feedback and the
completeness of the feedback [16], [17].

The most recent decade witnessed a focus shift to scalibility
of feedback as well as feedback generation through data-driven
approaches [25], [26]. Taking advantage of the large dataset of
programming assignment submissions to Massive Open Online
Programming Courses, such efforts typically provide repair
suggestions based on clustering correct solutions and matching
between faulty submissions and correct solutions [27]–[29].
Although such methods are fully automated and can be scaled
up massively, examinations on such methods from pedagogical
perspectives are still lacking. In addition, such methods might

be less effective for typical college-level programming courses
that have significantly fewer students.

Although automated feedback has been studied from dif-
ferent angles, the delivery approaches of automated feedback
(summative or formative) are rarely studied. This surprising
yet interesting phenomenon is partially due to the claims from
early automated assessment studies that formative feedback
might encourage trial and error behaviors, lead to system
abusing, and harm student learning [17], [24], [30], [31].
Such claims can be traced to an experience report of Chen
[17], which reported that students tended to perform trial and
error using formative feedback. However, it might be hasty to
conclude that students would barely learn from class or would
never realize that trial and error rarely helps solving problems
after multiple attempts.

It is worth noting that many studies claiming that formative
feedback might be harmful were actually studying automated
hints instead of automated feedback. Hints address the next
step(s) in problem solving, whereas feedback address the
mistakes learners have made. Hint functions were initially
studied by research on intelligent tutor systems. Such studies
were typically situated in K-12 education, within the context
of mathematics or physics education [32]–[34]. Hints in the
studied tutor systems were typically organized hierarchically
by the distance to revealing the final answers: the hint at the
surface level is most limited in information, whereas the hint
at the bottom level almost reveals the answers. Such systems
often allowed students to reach hints at deeper levels by simply
clicking buttons. Such a design was found to encourage system
gaming behaviors that harm learning [35], [36]. Although hint
and feedback were used interchangeably in many computing
education studies, the pedagogical differences between them
are significant (e.g., Anderson et al [37] combined both
feedback and hint in the LISP Tutor, but only used ”feedback”
to refer to both the facilitative functions).

III. RESEARCH DESIGN

A. Research Questions

The two research questions guiding this study include:
1) How is using automated formative feedback correlated

with knowledge transfer of computer science students?
2) How do computer science students react to automated

formative feedback based on their past academic perfor-
mance?

B. System Design and Development

A microservice was developed in this study to serve the
purpose of providing automated formative feedback to stu-
dents. Microservice refers to a paradigm of developing soft-
ware applications as modular services serving single purposes
and communicating with other software through well-defined
application programming interfaces [38]. The developed mi-
croservice works in conjunction with both the university-wide
learning management system (LMS) and homework repository.
The LMS is where students can check their grades and find



the automated formative feedback on each of their assign-
ments. The homework repository is where students submit
their programming assignments. In addition, the homework
repository also performs version control over all assignments.
The developed microservice communicates with both the LMS
and homework repository through their Application Program-
ming Interface (API). Once an assignment is submitted or
resubmitted to the homework repository, the microservice is
triggered to examine the submitted code and push feedback to
the LMS [see Fig. 1].

Fig. 1. Architecture of the Microservice

C. Experiments

In this study, the developed microservice was deployed in a
network course with 36 computer science majors at a compre-
hensive public university in the Northwestern United States.
The institutionally adopted LMS of the university is Canvas
(https://www.instructure.com/), and the homework repository
being used for the course was GitHub (https://github.com/).
Students completed a series of complex
programming-intensive projects in the course. All projects
required the application of the learnt conceptual knowledge in
network. The feedback seeking behavior of individual students
were tracked and collected during the whole course time.

To fully test the efficacy of automated formative feedback,
we did not set limits on either the number of feedback seeking
attempts or the amount of provided feedback. In addition,
our microservice provides feedback whether the program is
complete or not by the due date. To realize this, a sequence
of milestones were predefined for each project, and feedback
by milestone instead of final results were provided [see Fig.
2]. It is worth noting that if students fail to pass a milestone,
the testcases on the sequential milestones will not be triggered
to provide more feedback. Moreover, passing each milestone
will result in earning partial credit. The credits were reflected
in individual student accounts of Canvas immediately.

Feedback delivered by our microservice focused on two
aspects of programming: correctness and clarity. Correctness
feedback was generated through running the submitted code
against a series of tests with increasing complexity. For
instance, a simple test case examines whether a port was
bound by a server, whereas a more complex test case eval-
uates network concurrency by involving submitted bytes from
multiple clients. A failed test will be reported to individual
students with readable information and references to learning

Fig. 2. Sample Milestones of a Project

resources, so students can learn further and address the prob-
lem. Correctness feedback was realized through sandboxing
and using randomization Unix tools (e.g., bats and timeout).
Clarity feedback refers to feedback on students’ coding read-
ability and styles. Such feedback specifically addresses issues
such as inconsistent naming conventions, code redundancy, or
obvious inefficiency. A static checker, pylint3, was used to
provide clarity feedback to students. Pylint3 checks coding
styles and readability by PEP8 Style Guide for Python Code
(https://www.python.org/dev/peps/pep-0008).

D. Measurements

Student feedback seeking frequency was measured by
counting the number of submission and resubmissions of their
programming assignments. As is shown in Fig. 1, when an
assignment is submitted to the homework repository, the mi-
croservice will be triggered to examine the submitted code and
provide feedback accordingly. This measurement is consistent
with prior studies on automated programming assessment [17],
[18].

By the end of the course, a final exam on Computer
Networks was given to all students to measure the knowledge
transfer. The exam was a commonly used formal final exam for
the course that included topics commonly found in computer
networks such as Ethernet Protocol, TCP and UDP protocols,
Socket API and packet formatting. For example, simple ques-
tions focused on concepts such as what is the broadcasting
IP at layer 2 on the OSI model. More advanced questions
focused on the functional aspects of programming such as “In
the socket API which of the following functions is not used by
a server application.” The expectation was that students that
learn to do well with computer network programming will
have a better understanding of the theory and as such perform
better in the final exam. The exam was multiple choice and
was automatically graded by the e-learning platform (Canvas).

A survey was distributed to collect demographic informa-
tion and inquire about student preference of the automated
formative feedback:

1) What is your gender?
2) What is your age?
3) What college year are you in?
4) Do you like automated formative feedback? (Four-point

Likert scale was used)



5) Do you find automated formative feedback helpful?
(Four-point Likert scale was used)

The four-point Likert scale had the following choices:
Strongly Agree, Agree, Disagree, Strongly Disagree. Student
academic performance in prior CS courses was collected
from the institutional data warehouse. In addition, an in-depth
interview with randomly selected students was conducted to
better understand their reactions to the automated formative
feedback.

IV. RESULTS

A. Descriptive Summary

A total of 36 CS students enrolled in an advanced-level CS
course participated in this study. Their demographic informa-
tion is summarized in Table 1.

TABLE I
DESCRIPTIVE SUMMARY OF PARTICIPANTS

Number of students 36

Gender
Male 30.6%

Female 69.4%

Age
<= 21 22.9%

> 21 and <= 23 42.8%
> 23 34.3%

College Year
3rd Year 11.1%
4th Year 88.9%

B. How is using automated formative feedback correlated with
knowledge transfer of computer science students?

Given that automated formative feedback directly addressed
issues in course projects, it was natural if students who sought
feedback more frequently tended to have better performance
on the programming projects. This has been confirmed by prior
studies on automated formative feedback [16], [18]. However,
it is unknown whether digesting and absorbing the feedback is
correlated with student knowledge transfer from the projects
to other aspects of the course.

All students in this study had taken at least five CS courses
prior to the current course. Their cumulative CS GPA was
collected from the university academic records, given that
prior course performance of a student is strongly predictive
of his or her current and future performance. Correlational
analysis revealed that seeking feedback, cumulative CS GPA,
and knowledge transfer are all positively correlated with each
other [see Table 2]. All the correlations were found to be
significant.

To explore the relationship between seeking feedback and
cumulative CS GPA, we grouped students into two groups:
those with below-average CS GPA and those with above-
average CS GPA. Students with above-average CS GPA tended
to seek feedback more frequently than their counterparts.
Students with above-average CS GPA sought feedback 61 time

TABLE II
CORRELATIONAL ANALYSIS AMONG SEEKING FEEDBACK, CUMULATIVE

CS GPA, AND KNOWLEDGE TRANSFER

SF CGPA KT

Seeking Feedback (SF) 1.0
Cumulative CS GPA (CGPA) .422* 1.0
Knowledge Transfer (KT) .380* .627** 1.0

* p < .05; ** p < 0.01; *** p < .001

on average. In contrast, their counterparts sought feedback 41
times on average.

As the next step, we further grouped students by their
frequency of seeking feedback. For students with above-
average CS GPA, no significant difference was found be-
tween those who sought feedback more than average times
and those who sought feedback less than average times,
t(12) = 0.82, p = 0.43. In contrast, for students with below-
average CS GPA, those who sought feedback more than the
average times significantly outperformed their counterparts in
the exam, t(11) = 2.50, p < .05 [see Table 3].

TABLE III
STANDARDIZED FINAL EXAM PERFORMANCE OF STUDENTS GROUPED
BY CUMULATIVE CS GPA AND FREQUENCY OF SEEKING FORMATIVE

FEEDBACK

Group Criteria 2:
Seeking formative
feedback

Group Criteria 1: Cumulative CS GPA

Below-Average Above-Average

Less than average time -1.06 0.34
More than average time 0.2 0.51

C. How do Computer Science Students React to Automated
Formative Feedback?

Two survey questions (Q4 ”Do you like automated forma-
tive feedback?” and Q5 ”Do you find automated formative
feedback helpful?”) [see Appendix A] and in-depth group
interviews were used to measure students’ reactions to auto-
mated formative feedback. Students’ responses to the survey
questions (Q4: mean 3.39; Q5: mean 3.33) indicated that most
students enjoyed seeking automated formative feedback and
found it helpful in finishing assigned projects.

Four randomly selected students were invited for the in-
terview. Each student was interviewed for 15 to 20 minutes.
All interviews were audio-recorded, annotated and transcribed.
Thematic analysis was used to guide the analysis of the
interview data. Two rounds of coding were conducted on the
data. The first round was to establish a consistent coding
guideline. The second round was to apply the established
guidelines and fix prior errors. Core themes were identified
through comparing data across different interviewees. Two key
themes emerged from the analysis were time management and
motivation.

Students being interviewed expressed two aspects of au-
tomated formative feedback — immediacy and unlimited
number of testing — helped them know where they stand



in terms of finishing the assigned projects, and better manage
their time of working on the projects. Working in concert with
Canvas and GitHub, the microservice could inform students of
the partial credits they earned and the current average of the
whole class, which was deemed motivating for them to start
early and commit more time to the assignments. One student
said that:

For me it is good to check to see where I am. I
feel that I am motivated by doing more. Every time
I updated my code, I can check and see either I
get some points or where I did wrong. I can also
compare myself to the whole class on Canvas, to
see if I am behind the class or ahead of, which
is something I did a lot. Also it helps me to have
confidence in my code as well ......

V. DISCUSSION

Among the findings of this study, we would like to highlight
three points. First, this study confirms the findings on the
relationship between seeking formative feedback and academic
achievements in other fields. Same as many prior studies [9],
[11], [22], this study found that seeking formative feedback
was positively related to student academic achievement, such
as knowledge transfer, confidence and self-regulation from
both correlational analysis and the interview with random stu-
dents. However, different from many prior studies, this study
focused on knowledge transfer instead of student assignment
performance. Given that formative feedback directly addresses
challenges and knowledge gaps in programming projects, it
is possible that a positive cause-and-effect relationship exists
between seeking formative feedback and student knowledge
transfer. The results of this study confirm that the correlation
between seeking formative feedback and academic achieve-
ments in programming courses is similar as in other fields.

Second, there is a limited (due to sample size) indication
that students with weaker prior academic performance benefit
more from seeking automated formative feedback. For students
with lower-than-average cumulative CS GPA, if they seek
more formative feedback, they tend to achieve significantly
better knowledge transfer than their counterparts who seek
less formative feedback. This difference was not significant
for students with higher-than-average cumulative CS GPA.
One possible explanation is that formative feedback gives
students more opportunities to gauge their misunderstandings
and address their knowledge gap, and automation amplifies
such an effect [24], [39]. In addition, automated formative
feedback might be more suitable for addressing less-complex
knowledge components. As such, the effect might be more
obvious on students with weaker prior academic performance.
Future studies need to seek larger sample size that have a better
representation of the groups in order to further investigate this
effect.

Third, more facilitation is needed to help students with
weaker academic performance to seek automated formative
feedback. It is worth noting that students with better-than-
average cumulative CS GPA still sought formative feedback

more frequently than their counterparts, despite that the feed-
back seeking frequency did not have significant effect on their
knowledge transfer. As is observed in face-to-face contexts,
students who need the help the most tend to seek least help
[40]. Therefore, even with automated formative feedback de-
ployed, there is still room to raise the awareness of students to
use it, especially students with weaker academic performance.
Future studies may consider exploring and comparing different
approaches to motivate students to use automated formative
feedback in programming courses.

VI. LIMITATIONS

This study is not without limitations. First, the experiment
was conducted in an advanced-level computer science course,
where students have taken at least five core computer science
courses prior to the current one. The findings on students at
this level might not be the same as on entry-level students.
Therefore, the extent to which the findings of this study can be
generalized needs further exploration. Second, the cause-and-
effective relationship between seeking automated formative
feedback was not examined. Although the findings of this
study confirmed the positive correlations between the two
factors, correlation analysis by itself can not fully confirm
the benefits of automated formative feedback. Future studies
may consider path analysis on the two factors with a biger
sample size. In addition, in the experiment whenever student
push their committed updates on programming projects to
GitHub, automated formative feedback would be triggered.
We assumed that students would not make such pushes for
no apparent reasons except for seeking automated formative
feedback. Such assumption may not stand equally true for
entry-level courses where students are less familiar with basic
commands of Git. Future studies are recommended to adapt
the assignment submission schemes when focusing on entry-
level programming courses.

VII. CONCLUSIONS

Over the past few years there have been numerous studies
showing the benefits of formative feedback in different fields.
However, there has been a limited interest in the delivery of
feedback except for its automation and scalability in comput-
ing education. This study highlighted the benefits of automated
formative feedback on CS student knowledge transfer in a
network course. Building on the findings of this study, we
call for more empirical assessment on automated feedback in
computing education with an emphasis on different delivery
approaches.
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A. APPENDIX

Survey questions:
1) What is your gender?
2) What is your age?
3) What college year are you in?
4) Do you like automated formative feedback?
5) Do you find automated formative feedback helpful?
Four-point Likert Scale was used for question 4 and 5.




