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Abstract Bayesian inference has a long standing history in the world of statistics
and this chapter aims to serve as an introduction to anyone who has not been for-
mally introduced to the topic before. First, Bayesian inference is introduced using a
simple and analytical example. Then, computational methods are introduced. Exam-
ples are provided with common HCI problems such as comparing two group rates
based on a binary variable, numeric variable, as well as building a regression model.

1 Introduction

Dennis V. Lindley, arguably one of the leading advocates of Bayesian statistics
has said that “Inside every nonBayesian there is a Bayesian struggling to get out”
(Jaynes, 2003). To someone that has never heard of Bayesian statistics, this state-
ment could sound a bit condescending. It could be interpreted as an attack to-
wards “classical” statistics taught in most colleges as the main introductory statis-
tics course. Such an attack is not without precedence. A “war” between Bayesians
and Frequentists (a term often reserved for non-Bayesians), has been ongoing for
the majority of the 20th century. Ronald A. Fisher, one of the leading contributors
to frequentist statistics has referred to Bayesian statistics as “fallacious rubbish”
(Aldrich, 2008). Others have followed in his example and a campaign to devalue
Bayesian statistics has been going strong ever since. Yet, Bayesian statistics are still
strong and often used in many scientific fields especially Computer Science. This is
of no surprise since Alan Turing, seen by many as the father of Computer Science,
has used Bayesian logic in his infamous Enigma machine meant to decipher Ger-
man encrypted messages (McGrayne, 2011). Since then, Bayesian logic has been
utilized in various problems such as artificial intelligence, machine learning, pattern
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recognition and even email spam classification. Why utilize Bayesian statistics to
solve such problems? Looking back at Lindley’s statement one may find the an-
swer. Doing Bayesian statistics is in many ways how we intuitively perceive the
world as humans; having a prior belief about a statement, looking at the evidence
and adjusting our prior belief based on the evidence.

Human-Computer Interaction (HCI) has largely been a field of frequentism when
it comes to quantitative research. This can in part be attributed to the lack of proper
introductory curriculum for Bayesian statistics in HCI but also a lack of software
that can accompany research. Just a few decades ago the computing power was
simply non-existent for the complex models and calculations that are required to
conduct Bayesian inference (Robert and Casella, 2011). Fast-forward a few decades
and today Bayesian statistics are not only popular in a number of scientific fields but
one can claim that they are not any more difficult to use than frequentist statistics.
Bayesian inference is arguably more powerful and more informative due to its ro-
bustness for comparing hypotheses including the null hypothesis as well as making
use of more information that is available to a researcher through the use of priors
(Wagenmakers et al., 2008). This chapter serves as an introduction to Bayesian in-
ference by presenting examples of typical HCI problems and Bayesian solutions to
them.

2 Introduction to Bayes’ Theorem

We will consider a computer science adaptation of the popular sunrise problem
(Chung and AitSahlia, 2003) in order to understand how Bayesian inference works.
Imagine a child receiving their first technology device (e.g., computer, laptop, tablet,
etc.) and turning it on for the first time. After spending some time using the device,
the child turns it off and goes to sleep. What would the probability be that the device
will turn on again when the child wakes up? Frequentist solutions may just assign
100% probability to the event that the device will turn on or may express that if the
device fails it would be a 1:1 odds for that event to happen. The difficulty of fre-
quentist statistics for this particular problem is that they are not equipped to provide
answers for statements requiring an expression of probabilities from an observer’s
perspective. They work well for cases such as survey research, where a phenomenon
is standardized and repeatable, but, they fail when it comes to answering questions
when an infinite number of repetitions (even hypothetical) may not be possible.

This introduces the first major difference between Bayesian inference and fre-
quentist statistics. In the latter, the data (D) are random while the rate that the device
turns on (θ ) is an unknown yet it is a fixed value. In Bayesian inference, we are
concerned with the present without involving hypothetical multiple future attempts.
The data (D) are fixed, objective and known while the rate that the device will turn
on (θ ) is unknown and random. As pointed out by Jackman (2009), this does not
mean that the rate θ (the rate the device turns on) keeps changing but rather that
our belief about it changes as we observe the digital device turning on each time.
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Hence, while a frequentist sees the probability of a device turning on as a charac-
teristic of the device, a Bayesian sees the probability of a device turning on as a
degree of one’s belief given the observations. While both incorporate uncertainty,
the frequentist approach fails in some problems since uncertainty is defined as a
measurement error of finding the characteristic of a device. In contrast, a Bayesian’s
uncertainty is expressed in weaker probabilities that represent a belief due to limited
data at hand or data that comes in conflict with prior beliefs.

This perspective gives a Bayesian statistician the power to assign probabilities to
statements or beliefs. In our case that would be assigning probabilities to the rate
θ . We can say that there are two different outcomes for the child’s digital device:
θ = 0 the device does not turn on, and, θ = 1 the device turns on. Or better yet,
we may stipulate that the possibilities of the rate θ should be expressed in terms
of a likelihood scale. We can say that the possibilities (or possible values) for our
parameter θ will represent that a device will: Not Turn On, Not Very Probable to
Turn On, Not Probable to Turn On, Probable to Turn On, Very Probable to Turn On,
Turn On. Having six possibilities for our θ and assuming a range between 0 to 1,
we can give θ six different numeric possibilities that correspond to our likelihood
scale. So, θ is denoted by {0,0.2,0.4,0.6,0.8,1}.

Before we see any data (D) and even begin evaluating a problem, we have cer-
tain preconceptions or prior beliefs. These are prior probabilities (p(θ)) that are
assigned to each possible value (or outcome) for θ and should always sum to 1. For
those fancying formal expressions that would be:

n

∑
i=0

p(θi) = 1 (1)

where n is all the discrete possible values for theta based on our made up likeli-
hood scale.

If we believe prior to seeing any data that digital devices usually turn on, we can
assign more weight on the θ = 1 which corresponds to the will turn on belief in our
likelihood scale and gradually decrease our assigned probabilities. Our probability
mass for our prior beliefs for p(θ) will be 0.1, 0.15, 0.15, 0.20, 0.20, 0.4. Such
a prior is considered to be a subjective prior. However, one can also decide that
there is no apriori knowledge before one observes the data (D) and assign uniform
probabilities to the prior p(θ) such as 0.2, 0.2, 0.2, 0.2, 0.2, 0.2. This is often called
an objective prior since all possible outcomes for θ have equal probabilities (p(θ)).
However, even the uniform prior is not the least informative prior which can be
selected1 but it is considered sufficiently uninformative for many problems. Figure
1 shows the probability mass for the two examples of priors.

For our example we will assume that a friend informed the child that devices
usually turn on and it is rare that they would not turn on. The child has a prior
knowledge on the likelihood that a device will turn on, therefore we assume a prior
belief that the device is likely to turn on. In R this will look like:

> Theta = c(0,0.2,0.4,0.6,0.8,1)

1 Priors with higher variance can be considered less informative in this setting.
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Fig. 1 Probability mass for prior beliefs. Left figure shows an subjective prior while right figure
shows an objective prior.

> pTheta = c(0.1,0.15,0.15,0.20,0.20,0.4)

After declaring our prior beliefs, the next step involves processing the data D
that the child has observed. This is usually expressed as the Likelihood or p(D|θ)
which translates as the probability of the Data (D) given each θ . In our example,
a device can turn on and turn off. Since this is a binary problem, we can define
that the device can turn on as θ and device not turning on as 1− θ . Given that
the possible outcomes for θ belong to the range of decimals between 0 and 1, you
can think of the outcome turning on (θ ) and outcome not turning on (1− θ ) as
“polar” opposites. To avoid any confusion, the possible outcomes {θ ,1−θ} which
are derived from our data, are different from our arbitrarily defined possible values
for θ = {0,0.2,0.4,0.6,0.8,1}. For example, we could represent θ in a three point
scale such as θ = {1,2,3} and perceive the values as a discrete scale that means Not
Likely, Neutral and Likely.

The likelihood (p(D|θ)) is calculated using the binary data outcomes and obser-
vations (successes and failures) regarding these outcomes for each possible value θ .
This is formally defined as:

p(D|θ)︸ ︷︷ ︸
likelihood

= θ
s︸︷︷︸

succeses

(1−θ) f︸ ︷︷ ︸
failures

(2)

where s represents the numbers of times where the digital device turned on and f
represents the number of times where the digital device failed to turn on2. In R we
can write this using the following code:

> Data = c(1)

> s = sum( Data == 1 )

2 A more formal version of the likelihood would be p({y1, ...,yn}|θ) = ∏i θ yi (1−θ)(1−yi), where
the set D = {y1, ...,yn} represents the outcome for the sequence of attempts to turn on the device
(Kruschke, 2013).
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> f = sum( Data == 0 )

> pDataGivenTheta = Theta^s * (1-Theta)^f

This will result in p(D|θ) with probabilities for each possible θ : 0.0, 0.2, 0.4, 0.6,
0.8, 1.0 which are also shown in Figure 2. Since we had just one success in turning
on the device the biggest probability for our θ likelihood scale is placed in θ = 1
with gradually decreasing probabilities on the rest possible values for θ . Notice that
θ = 0 that represents the will not turn on case has virtually a zero probability of
occurring.
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Fig. 2 Probability mass for likelihood p(D|θ).

Of course, Bayesian inference is all about the transformation of our prior beliefs
(p(θ)) to a posterior belief (p(θ |D)) having seen the data through the likelihood
(p(D|θ)). The posterior is basically our set of probabilities for θ after we have seen
the data. To achieve this we use a mathematical formula called Bayes’ Rule. It was
conceptualized by Reverend Thomas Bayes in 1740s and later was given a formal
mathematical form and scientific application by Pierre Simon Laplace. It is formally
defined as (Kruschke, 2010):

p(θ |D)︸ ︷︷ ︸
posterior

= p(D|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

/ p(D)︸ ︷︷ ︸
evidence

(3)

In other words, having a prior belief, p(θ), times the likelihood, p(D|θ), di-
vided by the evidence, p(D), we can obtain a posterior belief conditional on the
data p(θ |D). In cases where θ has a discrete set of values, the evidence can be
calculated as the sum of the likelihood times the prior or formally defined as:

p(D)︸ ︷︷ ︸
evidence

=
n

∑
i=1

p(D|θi)︸ ︷︷ ︸
likelihood

p(θi)︸ ︷︷ ︸
prior

(4)

In R, we calculate the evidence p(D) using:
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> pData = sum( pDataGivenTheta * pTheta )

Notice that since p(D) is a sum of all probabilities, the result is a number (in our
example p(D) = 0.77) and not a probability mass like we had in the case of p(θ)
and p(D|θ).

Having calculated all the necessary components we can finally calculate our pos-
terior probabilities based on our data using:

> pThetaGivenData = pDataGivenTheta * pTheta / pData

The posterior probabilities for p(θ |D) are 0.00, 0.04, 0.08, 0.16, 0.21, 0.52. This
is also shown in figure 3. Due to our prior belief favoring the the possible values
for θ where a device will most likely turn on, and, the fact that the data through
the likelihood also favored the case where a device turned on, our posterior belief is
elevated higher towards the possibility that a device will turn on.
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Fig. 3 Probability mass for posterior p(θ |D).

The answer provided by Bayesian inference may appear to be terminal but this
is not the case. Just like in real life, we hold a belief and we update it as new evi-
dence (or data) comes in. This process can be iterative with today’s posterior belief
becoming tomorrow’s prior.

The child may accept her current beliefs about the device turning on. After ten
days she can use those same beliefs as a new prior and calculate the new poste-
rior but this time having observed ten successful times where the device turned on.
This transformation of beliefs is shown in figure 4 and it is the core concept behind
Bayesian inference. Repeated times of following this process and having continuous
success in turning the device on will place even more weight in θ = 1 for the pos-
terior p(θ |D), however, this will never become 100%. There is always uncertainty
and this unknown property of probability is included in Bayesian inference.

The example in this section has been using a discrete θ for instructional pur-
poses. In practice, a continuous θ should be used instead. The exact mathematical
approach for solving this problem would require a prior (p(θ)) that would be a
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Fig. 4 Overview of prior, likelihood, and posterior.

continuous probability distribution and not discrete. There is also a need for a like-
lihood function (p(D|θ)) that when combined with the prior, produces a posterior
probability distribution of the same form with the prior. The prior of this form is
often called a conjugate prior. This binary problem is mathematically solved using a
Beta distribution prior and a Binomial likelihood3. The computational approach for

3 In the Beta/Binomial approach, the prior is defined using the Beta distribution’s probabil-
ity density function (PDF). The simplified form of Beta’s PDF (for this type of problem), is
p(θ |α,β ) ∝ θ α−1(1− θ)β−1. Assuming that the friend told the child that he/she has seen these
devices turn on ten times (α = 10) and fail to turn on two times (β = 2), our prior would be:
p(θ |α = 10,β = 2) ∝ θ 10−1(1−θ)2−1. The likelihood function is based on the Bernoulli distribu-
tion with 1 successes and 0 failures expressed as p(D|θ) ∝ θ 1(1−θ)0. Using Bayes’ Rule we can
combine the likelihood and prior to produce the posterior distribution: p(θ |D) ∝ p(D|θ)p(θ) =
θ 10−1(1−θ)2−1θ 1(1−θ)0 = θ 10(1−θ)1. The posterior density is a beta density that we can eas-
ily interpret if we calculate its α and β parameters: α = 10+1 and β = 1+1. As such the mean
for θ is M = α/(α +β ) = 11/(11+2) = 0.846 or the child’s beliefs that the device will turn on
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this problem is described later on in this chapter. An alternative mathematical ap-
proach for this type of problem is the use of a Gamma prior and a Poisson likelihood
(Lynch, 2007).

As it is the case with many digital devices, at some point in the future the device
will not turn on and that may make us question our belief in induction, positivism,
and, our ability to deal with an unhappy child. However, this is a matter for another
discussion.

3 Computing Bayesian Statistics

It is easy to demonstrate how Bayesian statistics work in a simple problem such as
the one described in the previous section, however, nowadays we do not conduct
Bayesian inference by hand. The issue is one of complexity as problems are de-
fined in more “detail.” For example, the probability mass for our posterior may be
determined by a more complex likelihood (p(D|θ)) function that involves more out-
comes for θ . Additionally, the possible outcome values for θ may not be discrete
(e.g., the probability scale metaphor that we have used in our previous example)
but can be instead continuous involving a range of values (e.g., a range from 0 to
1 with all possible decimal points in between). For example, studying user reaction
times when replying to emails would require such a continuous θ . The posterior
probabilities in this case are not called a probability mass but a probability density
(Kruschke, 2010). The evidence p(D) which is the sum of the likelihood times the
prior for all θ values cannot be calculated as such since there could be an infinite
number of values with all of their decimals possibilities. Hence, we calculate instead
the integral of the likelihood times the prior for all θ values which in layman’s terms
produces an approximation of what the sum would be if we could calculate it. Such
complex problems require a different approach to the analytical approach that we
have used in the previous section.

Monte Carlo Markov Chain algorithms are used as a tool in order to solve com-
plex problems since they can approximate model parameters such as the parameter θ

in our previous example (Gilks, 2005). They use random walks (switching between
different values of all parameters in a model) based on a model of probabilities de-
rived from our observed data to approximate the point where a probability mass (or
probability density) for parameters is reaching a state of “equilibrium.” The random
walk creates a sequence which is called a chain (also known as Markov chain) and
the length of a chain (called the sample) is important for accurately determining
the value of a parameter. Each step in a chain is considered to be “memoryless.”
In essence, each step transitions between various states for a state space and the
probability distribution for every step is only dependent on the previous step. The-

is focused at 84.6%. The standard deviation is SD =
√

αβ

(α+β )2(α+β+1) ≈ 0.0093. The probability
interval with a 95% probability will be 0.846±1.96×0.0093 which places the child’s belief in the
device turning on between 82.7% and 86.4%.
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oretically, an infinite sample would create the most accurate result but in practical
terms we usually obtain a large enough sample (Plummer et al., 2006).

Figure 5 demonstrates how the algorithm works step by step to approximate the
probability “equilibrium.” The top two plots demonstrate a small sample. Our sam-
ple is just 10 which creates 10 steps in our chain (also called an interval). The al-
gorithm walks randomly between values but still within the constraints of observed
data. The traceplot demonstrates this walk and chain. The index represents each step
of the walk while the y-axis shows the sampled value for that step. If we summarize
these ten values we can create a probability density plot for our parameter X̄ . It is
evident that a sample of 10 is not large enough to obtain an accurate estimate. How-
ever, as we increase the sample (seen in the rest of the plots in figure 5) we slowly
achieve higher accuracy and approximate our probability “equilibrium.”
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Fig. 5 Example of Probability Density plot and Trace plot of MCMC with varying samples for X̄
parameter.

Early in the sample, chains often appear to be random. They can take a while to
get into the “sweet” spot of a parameter’s probabilities. For this reason, we often
decide to ignore the early parts of a chain and retain the latter parts. This is called a
burnin. For example, we may decide to retrieve a sample of 15,000 steps but have a
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burnin of the first 15,000 steps. Figure 6 demonstrates a sample of 15,000 without
a burnin and a sample with a burnin of 15,000. The lower two plots basically start
from the 15,000th step and end at 30,000th. Notice that for the first sample without
the burnin, the chain moves slightly downward. Chains that take longer to converge
are often referred to as slow-mixing (Lynch, 2007).

0

1

2

−0.4 0.0 0.4 0.8

X

P
ro

ba
bi

lit
y 

D
en

si
ty

Density Plot, MCMC Sample = 15000, Burnin = 0

0

1

2

−0.4 0.0 0.4 0.8

X

P
ro

ba
bi

lit
y 

D
en

si
ty

Density Plot, MCMC Sample = 15000, Burnin = 15000

−0.4

0.0

0.4

0 5000 10000 15000
Index

X

Traceplot, MCMC Sample = 15000, Burnin = 0

−0.4

0.0

0.4

0.8

15000 20000 25000 30000
Index

X

Traceplot, MCMC Sample = 15000, Burnin = 15000

Fig. 6 Example of Probability Density plot and Trace plot of MCMC with the same sample size
but different burnin for X̄ parameter.

The process of random walking utilized by MCMC algorithms can lead to chains
that look different each time. Using multiple chains and aggregating the results into
one ensemble can create a more accurate estimate. Figure 7 demonstrates 4 different
chains for a small MCMC sample.

An MCMC sample with a large interval and many chains can be a computation-
ally intensive task especially depending on the number of parameters we wish to
retain in order to construct their probability density distribution. In order to make
this process more memory efficient for computational systems the idea of thinning
was invented. Thinning retains only every nth element in a chain therefore reducing
the size of the sample in memory (Albert, 2009).

While we know that MCMC algorithms can produce a desired probability dis-
tribution for a parameter, we can never be sure how long it will take for a chain to
converge to that distribution. We may set an interval of 100,000 and a chain may
still not converge. For this reason, we use tests of convergence (Rossi et al., 2005).
There are several tests to verify an MCMC sample’s convergence. We can test for
convergence visually or using algorithms that test for it.

Visual inspection for convergence can be done by viewing traceplots for chains
and their mixing. If a chain takes longer to move through the whole parameter space
then it will take longer to converge. Good mixing appears as a trace that tends to be
stable within the values of the parameter (or parameter space). Figure 8 provides an
example of a sample that converges and one that does not.
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Fig. 8 Example of Trace plot that converges and one that does not for X̄ parameter.

The Gelman and Rubin shrink factor is another way to verify that the conver-
gence (Gelman and Rubin, 1992). The measure uses within-chain and between-
chain variance to produce a value of how well the model is converging over time. If
the shrink factor is close to 1 then our model has converged while values beyond 1.2
are indicative of a model that may have not converged and requires a longer chain.
However, there may be an occasion where one may receive a value that is smaller
than 1.2 by chance. Hence, plotting the statistic over time is considered to be a more
accurate approach. Figure 9 shows two Gelman plots for two parameters. The shrink
factor appears to reach 1 and hover around it after approximately the 2,000th step
in the sample. This is the point where the model started to converge. In this case, a
3,000 interval for our MCMC sample would be sufficient.
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Fig. 9 Example of Gelman and Rubin shrink factor plot for two parameters.

The Geweke diagnostic is another popular measure for detecting convergence
(Cowles and Carlin, 1996). The diagnostic tests for convergence on a per chain ba-
sis. The test retrieves samples from the chain of two non-overlapping samples (by
default the first 10% and the last 50% of a chain) and conducts a test of equal-
ity of means. If convergence has occurred the means should be virtually the same.
The result is a Z-score where scores below 1.98 indicate convergence and greater
than 1.98 indicate statistically significant difference for the samples derived from a
chain using a significance level .05 (5% probability that we are wrong over repeated
samples). One can also produce a plot over time for the statistic which is demon-
strated in figure 10. In this case, we can notice that parameter muX is having trouble
converging. Some of the points are beyond the threshold lines that mark the ±1.98
limit. One also has to take into account whether an MCMC chain had a burnin which
would affect convergence diagnostic.

Finally, there other diagnostics that can verify convergence for MCMC algo-
rithms such as measuring autocorrelation lag, Raferty and Lewis diagnostic, and,
Heidelberg and Welch diagnostic (Cowles and Carlin, 1996).

4 Bayesian Two Group Comparison for Binary Variables

We can consider a practical example in order to demonstrate how MCMC algorithms
assist in Bayesian inference. The example below can also be solved using a math-
ematical approach with a combination of a Beta prior and a Bernoulli likelihood.
MCMC is used in this section for instructional purposes.

A company wishes to improve employees email practices by investing in Mango
smart watches. The employees use mainly their desktop computers but need to carry
their tablets whenever they are away from their workspace. Tablets however are
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Fig. 10 Example of Geweke plot for two parameters based on one chain.

bulkier and so many employees prefer to carry their personal cell phones with them.
The use of personal cell phones for work-related matters is a security risk according
to company policy and so replacing them with smart watches is considered to be
a safer alternative by the company. The company conducts an experiment where
group A gets smart watches while group B does not. They receive back answers
on whether users have utilized their cell phones during the study. The results were
measured in a binary scale for individuals that used their cell phones during the
period of the study and individuals that did not.

We need to compare the rates between the two groups in order to determine if
the smart watches are a good choice for reducing the likelihood for cell phone use
4. The problem involves a dichotomous variable (exactly a yes or no question). We
start by defining our data in R:

> source("generate.R")

> email$usedcellphone = 0 #generating random data

> email$usedcellphone[email$team == 0] = sample(c(0,1),

+ nrow(email[email$team == 0,]),2,prob=c(.80,.20))

> email$usedcellphone[email$team == 1] = sample(c(0,1),

+ nrow(email[email$team == 1,]),2,prob=c(.20,.80))

> s1 = sum(email$usedcellphone[email$team == 0])

> s2 = sum(email$usedcellphone[email$team == 1])

> n1 = nrow(email[email$team == 0,])

> n2 = nrow(email[email$team == 1,])

where s1 and s2 represent the number of people who end up using their cell-
phones for each group respectively, and, n1 and n2 represent the total number of

4 An alternative approach to solving the problem would be to use Bayesian Probit Regression
(Jackman, 2009).
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people on each group. In our example, the total number of people varies between
the two groups.

MCMC algorithms work based on the process of model building. The aim is
to structure probability distributions for our parameters in order to simulate them
based on our observed data. Understanding probability distributions beforehand is
essential for building models. For example, normal distributions are reserved usually
for numeric variables and take as parameters the mean of a variable and the standard
deviation. In the case of binary variables, beta distributions are more appropriate
because they are continuous, bound between 0 and 1 and take two parameters α

and β , which define the slope of the distribution. Figure 11 shows examples of beta
distributions for a θ parameter. In our previous example with the digital device,
we decided that θ values will represent a likelihood scale. In this problem, we can
decide that θ values will denote the likelihood of cell phone use with 1 representing
an absolute probability for using a cell phone while 0 representing no probability of
using a cell phone. As such, α and β become representations of using and not using
a cell phone for our beta distribution.
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Fig. 11 Example Beta distributions based on different α and β .

Just like our digital device problem turning on and off, we can define a parameter
denoting cell phone use for each group, θ1 for group 1 and θ2 for group 2. These
rates will also need to be assigned priors based on our prior belief. In this case, we
decide that we do not have prior knowledge on what the outcome may be for our
experiment and we define equal prior “results”:

> s1prior = 1

> f1prior = 1

> s2prior = 1

> f2prior = 1
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where s1prior and s2prior are the prior rates of people that use cell phones for
the two groups and f 1prior and f 2prior are the prior rates for people that do not use
cell phones for each group respectively. In this case the values for all variables are
1 but they could have been any number as long as high and low values are equal so
that we can produce a uniform set of prior probabilities (see figure 11 first example).

MCMC modelling in R is represented by a set of distributions and their param-
eters (e.g., α and β for a Beta distribution) as well as functions. All of these are
enclosed within an R function that contains the model. Models unlike programming
code do not have to be written sequentially as they are not executed as such. Ad-
ditionally, in programming we often declare functions as y = x + z where y is the
unknown while x and z are variables with known values. In MCMC models, we
could also declare the same function but with x and y as variables with a known
value and z being the unknown variable.

> jags.bin <- function() {

+ theta1 ~ dbeta(s1prior,f1prior)

+ theta2 ~ dbeta(s2prior,f2prior)

+ s1 ~ dbin(theta1,n1)

+ s2 ~ dbin(theta2,n2)

+ delta <- theta1 - theta2

+ }

Our two distributions for θ1 and θ2 are declared within the JAGS model. JAGS
stands for Just Another Gibbs Sampler and it is a program for analyzing Bayesian
models using MCMC sampling. We first supply parameters and their assigned prior
beliefs (which are uniform in this case) to our model. We also need to define the like-
lihood. Binomial distribution is our choice for this problem which is a discrete dis-
tribution using parameters as the probability rate (probability of using a cell phone)
and the total number of sequences. From a programming perspective this may ap-
pear a bit peculiar, however, models do not have to operate sequentially or have
functions and distributions being sequentially defined. As long as all variables, dis-
tributions and parameters are all accounted for, the model will produce results. In
this case, s1, s2, n1, n2 are known discrete variables and θ1 and θ2 are unknown
albeit with priors defined. Finally, we can also calculate the difference between θ1
and θ2 called δ (in the R code defined as delta).

After setting up our model we can proceed by setting the parameters for MCMC
using the command jag.model and then utilize coda.samples to generate posterior
samples based on the parameters of interest. The process simulates all variables for
our model however the sampled chains that are returned are only those that interest
us. These are declared as a list.

> n.simu <- 50000

> n.burnin <- n.simu/2

> par <- c("theta1","theta2","delta","deltaprior",

+ "theta1prior","theta2prior")

> D <- list(s1 = s1, s2 = s2, n1 = n1, n2 = n2,
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+ s1prior = s1prior, s2prior = s2prior,

+ f1prior = f1prior, f2prior = f2prior)

> m.jags <- jags.model("jags.txt", data = D,

+ n.adapt = n.burnin, quiet = TRUE, n.chains = 4)

> s <- coda.samples(m.jags, par,

+ n.iter = n.simu - n.burnin, quiet = TRUE)

The object produced by coda.samples contains all the variables requested using
the list par. The object can be converted to a data frame containing all chains for
easier post-processing. The downside to this approach is that the data frame can be
quite large unless thinning is applied. Using the data frame we can then obtain the
mean value of the posterior sample for θ1, θ2, and δ .

> df = as.data.frame(as.matrix( s ))

> mean(df$theta1)

[1] 0.2335576

> mean(df$theta2)

[1] 0.7144396

> mean(df$delta)

[1] -0.480882

In this case, we can see that group B has a higher cell phone use rate than group
A. The difference δ is almost half (0.481) for our values of θ that range between
0 and 1. Just like traditional confidence intervals in frequentist statistics we can
also calculate 95% probability intervals. The commonly used probability interval
for Bayesian statistics is called High Density Interval (HDI) included in R’s BEST
package.

> c(hdi(df$theta1,.95)[1],hdi(df$theta1,.95)[2])

lower upper

0.0930076 0.3841601

> c(hdi(df$theta2,.95)[1],hdi(df$theta2,.95)[2])

lower upper

0.4879375 0.9260797

> c(hdi(df$delta,.95)[1],hdi(df$delta,.95)[2])

lower upper

-0.7445349 -0.2098999

We can observe that the probability interval for the difference is quite broad
which is likely a result of a small sample. However, we can still be confident based
on the results that group B exhibited higher cell phone use. In other words, the im-
plementation of devices in group A had a substantial improvement in reducing cell
phone use and therefore improving security in compliance with what the company
wanted to achieve. But, how about hypothesis testing?

Bayesian inference also provides paths to perform hypothesis testing. A popular
formula is Bayes Factor which allows us to test the odds ratio between two hy-
potheses (e.g., H0: δ = 0 and H1: δ 6= 0). This is covered in chapter 9 of this book.
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An alternative to the Bayes Factor is provided by Kruschke (2010), which is simi-
lar to equivalence testing used in biomedical sciences. One can define a Region of
Practical Equivalence (ROPE) around a point of non-difference between rates and
determine on whether a practical difference exists between two rates. In our case,
we could suggest that for the point of equivalence (δ = 0) we define a ROPE in a
±0.20. The definition is dependent on the context and experimental design. For ex-
ample, in our binary problem of cell phone use, we may assume that if the difference
between two groups is less than 0.2 then we may decide that the smart watches are
not a worthwhile investment. Different companies may be willing to invest on the
smart watches with differences as low as 0.1. After a ROPE is defined, we identify
whether we can accept the hypothesis of δ = 0 or whether our 95% HDI falls within
the ROPE or falls completely outside the ROPE. As our sample size grows, 95%
HDI tends to accumulate more around the mean of the posterior sample and as such
probability around the posterior mean value increases.

To calculate the percentage of our posterior sample that falls within the ROPE
we need to determine if any of the sample values fall within our ROPE.

> ROPE = c(-0.2,0.2)

> (pcInROPE = sum( df$delta > ROPE[1] & df$delta <

+ ROPE[2] ) / length( df$delta ) )

[1] 0.02984

Determining the amount of HDI that falls within the ROPE requires us to calcu-
late what is the 95% of our posterior sample for δ and then use a similar approach
to determine what amount falls within the ROPE. The code for this is provided in
the supplementary materials of the book.

For this particular example, 2.984% of our posterior sample falls within the
ROPE, while 0% of our HDI falls within the ROPE. We can therefore reject the
null hypothesis and accept that there is a substantial difference between groups.

Similar to our previous example, the advantage of using Bayesian inference to
determine the improvement of processes due to the implementation of a product or
user interface is that we can relaunch an experiment for future device implemen-
tations. The second experiment can then utilize the posterior results from the first
experiment as priors.

5 Bayesian Two Group Comparison for Numeric Variables

In HCI, we often want to evaluate the difference for a numeric variable between two
groups. In our smart watch example, we have measured the email response times
between group A that had the smart watch and group B that did not have the smart
watch.

The process of obtaining posterior samples for each group and hypothesis testing
is similar to testing binary rates. The main difference involves establishing a model
that can reflect the nature of the numeric variable.
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In this case, distributions of numeric variables are usually normal. A normal dis-
tribution is a continuous probability distribution that accumulates around a single
point and gradually dissipates (see Fig. 6). Comparing two rates between normal
distributions is establishing the difference between their two means. Hence, our like-
lihood portion for our model will include a loop between our data for each group
using a normal distribution.

> jags.bin <- function() {

+ for (i in 1:n1) {

+ group1[i] ~ dnorm(muX, tauX)

+ }

+ for (i in 1:n2) {

+ group2[i] ~ dnorm(muY, tauY)

+ }

+ muX ~ dnorm(0, 0.001)

+ muY ~ dnorm(0, 0.001)

+ sigmaX ~ dunif(0, 1000)

+ sigmaY ~ dunif(0, 1000)

+ tauX <- 1 / (sigmaX * sigmaX)

+ tauY <- 1 / (sigmaY * sigmaY)

+ delta <- muY - muX

+ }

Notice that in this case the known part is the list of values for group1 and group2
that are indexed by i within the loop. The means, µX and µY (in the code typed as
muX and muY), as well as the standard deviations, τX and τY (in the code typed
as tauX and tauY), are the unknown components. Normal distributions in JAGS use
standard deviations using τ and not σ which is more common in statistics. We need
to take this into account when modeling.

Since the means µX and µY are our rates of interest (just like θ previously), we
need to represent them in the form of a probability distribution not a single point
estimate. As such we can set their priors in a form of a normal distribution. We also
set the standard deviations, τX and τY , derived from σX and σY (in the code typed
as sigmaX and sigmaY) in a form of a uniform distribution where all probabilities
are the same for all possible values.

Finally, we add to the model any final calculated variables such as the difference
between the means, δ (in the code typed as delta).

By declaring the model using JAGS, we can obtain posterior samples and deter-
mine the means for the two groups. These can be obtained as a point estimate (e.g.,
based on the mean of posterior sample) or as a posterior probability distributions for
the two groups which can be plotted. These are shown on figure 12.

It is evident that the implementation of smart watches for group A had a dramatic
effect in reducing email response time. Notice that the two probability distributions
do not overlap and that we are more certain about a point estimate for group A.
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Fig. 12 Probability distributions between Group A and Group B for the smart watch experiment.

We can further calculate the point estimate based on the mean for the posterior
samples of the two means, their 95% HDI, and further use the posterior sample for
δ to determine based on a ROPE whether to reject or accept the null hypothesis.

The results for this particular experiment suggest that there is a considerable
difference between group A (M=3.222, 95% HDI [2.597, 3.822]) and group B
(M=7.835, 95% HDI [6.372, 9.239]) since the 95% HDI for δ falls outside the
ROPE of ±0.2. The mean difference is 4.6 minutes which can have a considerable
effect on productivity. Just like before, whether smart watches are a worthwhile in-
vestment depends on the company and the threshold used as a ROPE. For example,
in our case the managers have decided on using a really small ROPE, which is a 0.2
minutes difference. On the other hand, if managers were to decide that an invest-
ment was worth it only if email response time was beyond three minutes then the
ROPE would have to be set to 3. Even for this case, the HDI falls outside the ROPE
so the smart watches are a good investment. An alternative model to the one offered
in this chapter for a Bayesian t-test can be found by Lee and Wagenmakers (2014).

6 Bayesian Regression with Numeric Predicted Variable

Aside from determining how an experimental design may influence the outcome
of email response time, we can also attempt to determine information such as how
technical efficacy of people may affect email response time. We can start by gener-
ating an artificially correlated variable for illustrative purposes.

> source("generate.r")

> email$technicalEfficacy = email$responseTime *

+ runif(length(email$responseTime), 0.0, 5.0)
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Regression models that involve numeric predictors are implemented using the
regular regression formula (y = b0 +b1 ∗ x) with a slight modification:

> jags.bin <- function() {

+ for(i in 1:N) {

+ y[i] ~ dnorm(f[i], tau)

+ f[i] <- b0 + b1 * x[i]

+ }

+

+ # Priors

+ tau <- 1/pow(sigma,2)

+ sigma ~ dunif(0, 1000)

+ b0 ~ dnorm(0, 0.001)

+ b1 ~ dnorm(0, 0.001)

+

+ # R-squared calculation

+ y.mean <- mean(y[])

+ for (i in 1:N) {

+ ss.res.temp[i] <- y[i] - f[i]

+ ss.res[i] <- pow(ss.res.temp[i], 2)

+ ss.reg.temp[i] <- f[i] - y.mean

+ ss.reg[i] <- pow(ss.reg.temp[i], 2)

+ ss.tot.temp[i] <- y[i] - y.mean

+ ss.tot[i] <- pow(ss.tot.temp[i], 2)

+ }

+ r.squared <- (sum(ss.reg[])) / (sum(ss.tot[]))

+ }

In this case, the known variables are y (representing response time), x (represent-
ing technical efficacy) and N which is the total number of cases that are used for our
loop. Our modeled variable is f which forms the typical regression formula with b0
being the intercept and b1 the coefficient for our predictor variable.

Priors are defined in our model for τ , σ , b0 and b1. The priors in this case are
objective since there is no prior knowledge for these variables. Priors for the coef-
ficients have a mean of 0 and a small standard deviation while sigma is a uniform
distribution, which is a distribution with equal probability for all outcomes.

Using the coefficients b0 and b1, we can obtain all relevant data for our regression
model similar to a frequentist linear regression. We can also implement within the
model other calculated statistics. An important measure for regression is calculating
R2 (the amount of explained variance by our model) and in Bayesian regression we
can obtain a probability distribution for it. In this example, the implementation of
R2 uses the exact same formula used in frequentist regression.

We can then obtain our posterior samples the same way we did before using JAGS
and coda.samples. Figure 13 demonstrates the probability distribution for R2 which
indicates a substantial amount of accounted variance.
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Fig. 13 Probability distribution for R2 when modeling email response time and technical efficacy.
Red dotted line indicates the mean for the posterior sample. The more narrower the curve around
a single point, the more likely the R2 is around that single point. Narrower curves also produce
tighter HDIs for R2 which increases are certainty for the accounted variance of a model around a
specific point.

We can further obtain point estimates for our coefficients as well as their 95%
HDIs.

> mean(df$b0)

[1] 2.230924

> c(hdi(df$b0,.95)[1],hdi(df$b0,.95)[2])

lower upper

1.463655 3.008316

> mean(df$b1)

[1] 0.1877244

> c(hdi(df$b1,.95)[1],hdi(df$b1,.95)[2])

lower upper

0.1433942 0.2326414

> mean(df$r.squared)

[1] 0.6821717

> c(hdi(df$r.squared,.95)[1],hdi(df$r.squared,.95)[2])

lower upper

0.3720231 1.0010375

Notice that the upper bounds for the R2 95% HDI exceed 1 which is the otherwise
analytical upper limit. However, since in Bayesian statistics we simulate calculated
variables, these could go beyond the limits for metrics such as R2. It is a consequence
caused by the “noise” created by our simulation. As the sample size increases this
behavior will dissipate and R2 will be bounded between 0 and 1 as it is expected to
be.
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The accounted variance (R2) informs us that technical efficacy is an important
factor that affects email response time. The coefficient for technical efficacy (b1)
has a mean of 0.18 according to its posterior probability distribution. The arbitrary
scale for technical efficacy used in this example varies between 0 and 51 with lowest
scores representing higher efficacy. Assuming that email response time is measured
in minutes, this translates to about a minute of slower response time for every five-
point increase (less technical expertise) in the technical efficacy scale. The result
suggests that training individuals to have better technical skills will result in a sub-
stantial increase in email response time. On the other hand, if the email response
time was measured in seconds, the increase in response time may have been negli-
gible even though our model will still suggest a large accounted variance between
technical efficacy and email response time.

7 Do not reinvent the wheel

The examples demonstrated in this chapter are not meant to cover a complete view
of Bayesian inference but rather serve as an introduction. At this point, it may seem
that Bayesian inference may involve a lot of work for HCI professionals, however,
this is not the case. Bayesian statistics were prevented from appearing in mainstream
curriculum due to the computational inefficiency that existed for MCMC algorithms
over the past decades. This fact has also restricted many to develop software for
Bayesian statistics that requires the same effort comparable to building a traditional
t-test or linear regression model. At the moment, software for Bayesian statistics
is not as flexible for building complex models and JAGS or similar modeling soft-
ware is necessary. However, many methods frequently used by HCI professionals
such as a variety of regression models as well as various statistical tests (e.g., t-test)
are available. For example, the package BEST in R Kruschke (based on 2013) pro-
vides a way for testing two group means. Also, packages such as Zelig (Imai et al.,
2008) include an ensemble of many Bayesian methods such as Bayesian Logistic
Regression, Multinomial Logistic Regression, Linear Regression and Ordered Pro-
bit Regression. As a brief example, the regression model that we tested previously
can be built using Zelig with just two lines of code.

> z.out <- zelig(output ~ predictor,

+ model = "normal.bayes", data=df,

+ mcmc = n.simu - n.burnin, burnin = n.burnin)

> summary(z.out)

Call: zelig(formula = output ~ predictor,

model = "normal.bayes", data = df,

mcmc = n.simu - n.burnin, burnin = n.burnin)

Iterations = 25001:50000

Thinning interval = 1
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Number of chains = 1

Sample size per chain = 25000

Mean, standard deviation, and quantiles

for marginal posterior distributions.

Mean SD 2.5% 50% 97.5%

(Intercept) 2.2323 0.3848 1.4725 2.2316 2.9955

predictor 0.1876 0.0223 0.1440 0.1875 0.2316

sigma2 2.7399 0.6624 1.7388 2.6451 4.3284

Research papers in HCI as well as other fields have utilized Bayesian analysis as
the main analytical method or as a supplementary method (Tsikerdekis, 2013; Tri-
antafyllopoulos and Pikoulas, 2002; Muchnik et al., 2013; Volf et al., 2014; Trusov
et al., 2010). When utilizing Bayesian methods the degree of introduction can vary.
Some authors choose to provide a bit more background information on the meth-
ods used while others prefer to publish the result and refer readers to textbooks for
more information on the methods. The same degree of variance can be found in
the use of probability distribution charts. At times, authors choose to display point
estimates even though Bayesian analyses offer probability distributions for the pa-
rameters of interest. The language can also vary when it comes to reporting results.
For example, consideration should be given when one needs to report MCMC sam-
ple, burnin, thinning and additional measures that may be essential for replicating
the same results or approximating them.

Bayesian inference has arrived and it is not just easier to perform but much more
powerful compared to frequentist statistics (Wagenmakers et al., 2008). It adds more
diversity to HCI research and thus produces more intuitive results that can be di-
rectly interpreted based on current and past knowledge. It is time for all of us to
listen to our inner Bayesian that is struggling to get out!
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